泰坦尼克号数据集,是kaggle(Titanic: Machine Learning from Disaster)上入门机器学习(ML)的一个好的可选数据集,当然,也是不错的练习数据分析的数据集。对 python ,在数据分析方面,作为一柄利器,涵盖了「数据获取→数据处理→数据分析→数据可视化」这个流程中每个环节, 这风骚的操作,也是没谁了。
这个项目做下来,除了没有涉及到数据抓取(python爬虫)外,基本上把python 数据处理分析的各个版块都做了一个完整的贯穿。对此进行归纳总结,算是倒逼自己对所接触到的知识,进行结构化的梳理和输出。
探索的问题
主要探寻坦尼克号上的生还率和各因素(客舱等级、年龄、性别、上船港口等)的关系。
获取数据
# 用于数据分析
import pandas as pd
import numpy as np
# 用于绘图
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# 读取前五行数据
data_t = pd.read_csv('titanic-data.csv')
data_t.head()
复制代码
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
| 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
| 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
| 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
| 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
# 数据集信息,包含数据集大小,列名,类型
data_t.info()
data_t.columns.values
复制代码
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1 entries, 0 to 0
Data columns (total 12 columns):
PassengerId 1 non-null int
Survived 1 non-null int
Pclass 1 non-null int
Name 1 non-null object
Sex 1 non-null object
Age 714 non-null float
SibSp 1 non-null int
Parch 1 non-null int
Ticket 1 non-null object
Fare 1 non-null float
Cabin 204 non-null object
Embarked 8 non-null object
dtypes: float(2), int(5), object(5)
memory usage: 83.6+ KB
array(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype=object)
复制代码
数据观察
-
载入 titanic-data.csv 到一个 DataFrame ,然后用 head() 函数打印出前5行数据(p.s 用 tail() 函数可以打印出后5行)。
-
通过对数据的初步观测,这个数据样本一共有 1 行 * 12 列数据,字段包含: 'PassengerId(乘客id)', 'Survived(是否活下来)', 'Pclass(船舱等级)', 'Name(姓名)', 'Sex(性别)', 'Age(年龄)', 'SibSp(兄弟姐妹同行数量)','Parch(父母配偶同行数量)', 'Ticket(票)', 'Fare(费)', 'Cabin(船舱)', 'Embarked(上船站)'
-
其中, 定类变量 包括 Survived,Sex,Embarked, 定序变量 包括 Pclass, 数字变量 包括 PassengerId,Age,SibSp,Parch,Fare
-
通过观测发现,Age、Cabin、Embarked 包含了有空值
# 字段分析
def y(x):
return data_t[x].unique()
print('='*20 + 'Survived字段内容' + '='*20)
print(y('Survived'))
print('='*20 + 'Sex字段内容' + '='*20)
print(y('Sex'))
print('='*20 + 'Pclass字段内容' + &#