LiBo,WangXiangfeng,SunLina,CuiYan(ShenyangInstituteofEngineering,Shenyang110136,China)
Abstract:InordertoimprovethefidelityoftheIRhyperspectraltargetcharacteristicsimulation,aninfluencemodelwaspresentedinthispapertocalculatetheinfluenceofthenearbybuildingonthetargetfinalradiationatcertainwavelength.Avirtualexperimentscenewasconstructedwith1976U.S.standardatmosphere.Simulationexperimentsweredonebasedontheconstructedvirtualscenein3.0-5.0滋matintervalsof0.01滋m,andthecalculationresultswerecomparedwiththetargetreflectedsolarradiationandthetargetself-radiation.Experimentsresultsshowthattheradiationinfluencefromthebuildingarehigherthanthetargetreflectedsolarradiationorthetargetself-radiationatsomewavebandranges,whichmeanstheradiationinfluenceisthemostcriticalradiationinsomeimagesoftheimagecube.Itprovestheinfluencemodelpresentedinthispaperisnecessaryandimportantinhyperspectralsimulation.Throughtheanalysisofsimulationresults,thebuildingsurfacetemperature,atmospheretransmittanceandthevalidradiationareaaredeterminedtobethe3keyfactorstoaffecttheinfluenceradiationofnearbybuilding.Keywords:radiationinfluence;CLCnumber:TJ765atmospheretransmittance;reflectance;reflectedsolarradiationDocumentcode:ADOI院10.3788/IRLA201847.0304003中波红外高光谱仿真中的辐射影响模型李波,王祥凤,孙丽娜,崔妍(沈阳工程学院,沈阳辽宁110136)摘要院为提高红外高光谱目标特性仿真的逼真度,提出了一种辐射影响计算模型,用于计算目标周围的建筑物对目标的最终辐射特性的影响。建立了一个虚拟实验场景,设定场景的大气环境为1976年的美国标准大气。在建立的虚拟场景上在中波红外3.0~5.0滋m范围内以0.01滋m为步长对目标所受的辐射影响进行了仿真计算,并将辐射影响与太阳辐射、目标自身辐射进行了比较。实验结果显示在中波红外的某些波段范围内,相邻建筑单位面积的辐射影响亮度要高于太阳辐射亮度和目标自身辐射亮度。这表明在图像立方体的某些图像中,辐射影响是成像的最主要的辐射源,证明了多光谱/高光谱仿真情况下该模型的必要性和重要性。通过对仿真结果的分析,确定了建筑表面温度、大气透过率和有效辐射面积是辐射影响因素中的三个关键因素。关键词院辐射影响;大气透过率;反射率;反射的太阳辐射收稿日期院2017-10-10曰基金项目院作者简介院通讯作者院修订日期院2017-11-20(2015020020)曰(L2015368,L201602,LQN201709,L15BGL035)曰(18-015-7-29)
袁袁袁袁袁遥遥Email:lbian@126.com
(1980-)袁(1981-)袁0304003-1
红外与激光工程
第3期www.irla.cn第47卷0IntroductionWiththeapplicationanddevelopmentofinfraredbecomeimagingthenewtechnology,generation[1-3]
simulationshouldnotusethewayoftraditionalIRsimulationdirectlybecauseoftheignoranceoftinywavebandrangcharacteristic.Aradiationinfluencemodelforthehyperspectraltargetradiationcharacteristictheofinfraredmultispectral/hyperspectralimagingtechnologyhasphotoelectricdetectiontechnology,andhasbeenwidelyusedsimulationisproposedinthispaper.Themodelisusedtocalculatetheradiationinfluenceonthetargetradiationfromanearbybuildinginthewavebandrangof3-5滋matintervalsof0.01滋mbasedonavirtualscene.Thecalculationresultsshowtheradiationdifferencesamongtinywavebandsandtheimportanceandnecessityoftheradiationinfluencemodel.Theresearchworkinthispapershowsthatsomefactorswhichneedn忆ttobeconsideredinthewidewavebandsimulation(like3.0-5.0滋m)couldbeveryimportantwhichcandecidewhetherthesimulationresultiscorrectinsometinywaveband.TheresulthasveryimportantguidingmeaningtothedeterminationofnecessaryfactorsintheIRhyperspectralsimulation.inmanyfieldssuchasmilitary,agriculture,industry,biologyandsoon.ComparedwithtraditionalIRimages,thehyperspectralimagescanprovidemoreinformationinformofimagecube,whichmergesthespatialinformationandspectralinformation.Inthe[4]
developmentofrelevantinstruments,equipmentsandthevalidationofrelevantalgorithm,plentyofhyperspectralimagesareneeded.Theimagesacquiredfromrelevantequipmentsareexpensive,anditisimpossibletocaptureimagesinvariousmeteorologicalenvironmentontheotherhand.Asaresult,theinfraredhyperspectralsimulationtechnologyhasbecomeanewresearchhotspot.Theinfraredhyperspectralsimulationtechnologyisdevelopedfromtraditionalinfraredsimulationtechnology[5].Theimagesfromtraditionalinfraredsimulationtechnologyfocusontheoverallradiationstatusofawidewavebandrangelike3-5滋mand8-12滋m,whichignoretheradiationcharacteristicofeverysingletinywavebandrangelike3.04-3.05滋mand9.25-9.26滋m,whilethehyperspectralradiationimagescanexactlytinyshowthedifferencesbetweenwaveband员EstablishmentofthemodelThemainfactorsforthetargetradiationcharacteristicsimulationinthetraditionalIRsimulationarethetargetself-radiationandthereflectedradiationofthetargetfromenvironment,whiletheenvironmentradiationincludingthesolarradiation,theatmosphereradiationandthegroundradiationisshowninformula(1):Lobj()=Lobjself()+Lrsun()+Lrground()+Lrsky()simulatethetargetcharacteristicin(1)theTheformula(1)isnotpreciseenoughtohyperspectralsimulationbecauseoftheignoranceoftheradiationinfluence.Forexample,ifthetargetisbeyondabuilding,thebuildingwillinfluencetheradiationcharacteristicofthetarget.Theinfluenceeffectisespeciallyobviousinhyperspectralsimulation,andcan爷tbeshownbyformula(1).ranges.Theradiationdifferenceshaveimportantsignificanceinmanyfieldssuchastargetdetectionandidentification,IR-counter-countermeasures[6]andsoon.Atthemeantime,thehyperspectralsimulationrequiresmuchmoreprecisedata,becauseanytinydatanoisemayinfluencetheeffectofthesimulationimages.Therefore,asmanyaspossiblefactorsshouldbeinvolvedinthehyperspectralsimulation[7]
.Andthehyperspectral0304003-2
红外与激光工程
第3期www.irla.cn第47卷AvirtualsceneisconstructedasshowninFig.1.Thereisatargetinthescene,whosesurfaceisthegroundradiationtheatmosphereradiationareignoredinthispaper.AsshowninFig.1,theradiationinfluenceofthetargetwhichcanbecalculatedbyformula(3)ismainlyfromtheself-radiationofthenearbybuildingandthereflectedsolarradiationofthenearbybuilding.Linfl()=Lrb()+Lrbsun()(3)WhereLrb()isthetargetreflectedradiationfromFig.1Virtualscene
nearbybuilding,andLrbsun()isthetargetreflectedradiationfromthenearbybuildingreflectedsolarradiation.Intheprocessofradiationtransmission,theatmospherewillresultinanabsorptionlosstotheradiation.Thereflectedradiationofapointonthetargetfromperunitareaofthenearbybuildingcanbecalculatedasinformula(4),whichisrelatedtotheatmospheretransmittanceandthereflectivityofthematerialoftheouterwallofthebuilding.Lrbu()=Lbp(,T)伊()伊r()WhereLbp(,T)istheradianceofwavebandtemperatureTofaunitvalidradiationarea,istheatmospheretransmittanceatwavebandandrmadeofaluminiumalloy.Aconcretebuildingislocated100mfarfromthetarget,whoseouterwallisroughenoughtoworkasaLambertreflectingplane.Settingtheatmosphereofthevirtualsceneis1976USstandardatmosphere,thewheatheriscleanandcalm,thevisibilityonthegroundis23km,theaerosolmodelofneargroundistypicalaerosolmodel.Thecloudeffectandconvectionisunconsideredinthevirtualscene.Thesunisinthe200thdayinayear,thezenithangleandazimuthangleare30毅.AllthereflectionbythetargetandthebuildinginthesceneissetasLambertianreflection.Inviewofthissituation,theinfluencecalculationmodelisproposedtoachievemoreprecisesimulationofthetargetcharacteristic.Lobj()=Lobjself()+Lrsun()+Lrground()+Lrsky()+Linfl()(2)WhereLinfl()isthecalculationitemoftheradiationinfluenceforthetargetfromnearbybuildings.Consideringthefactthatthesolarradiationandthetargetself-radiationaretwomostimportantitemsintheprocessofIRdetection,ifsomeradiationcouldbecomparedtothistworadiation,thentheradiationshouldnotbeignored.Inordertodescribetheimportanceoftheradiationfromnearbybuildings,theresearchofthezerostadiaradiationcharacteristicofthetargetismainlyfocusedonthesetwofactors,and(4)at(),()isthereflectanceofthetargetsurfaceat.wavebandForanypointPonthetargetsurface,thetotalradiationfromthenearbybuildingisrelatedtothevalidradiationareaforpointP,asshowninFig.2.ThetotalradiationPreceivedcouldbedescribedinformula(5):Lrb()=乙S0
Lrbu()ds=乙S0
Lbp(,T)伊()伊r()ds(5)Fig.2ValidradiationareatoP
0304003-3
红外与激光工程
第3期www.irla.cn第47卷WhereSisthevalidradiationareatopointP.Assumingtheouterwallofthenearbybuildingislambertbodybecauseofitsroughness,whichmeansthesolarradiationreflectedbytheouterwallhasthesameintensityatalldirection.Thebuildingreflectedsolarradiationwillbereflectedbythetargetsurface,aftertheabsorptionoftheatmosphere,andfinallyachievethesensor.TheradiationfromaunitvalidradiationareareceivedbypointPonthetargetsurfacecouldbedescribedasformula(6):Lrbsunu()=Lsun()伊b()伊()伊r()WhereLsun()isthesolarradiance,andatwaveband.b
relatedtothesurfacetemperatureTandtheemittancewavelength()ofthesurfacematerialat.AccordingtoPlancklawofblack-is:c2Tbodyradiation,theradiationexitanceofblack-bodyoftemperatureTatwavelengthMblack(,T)=Wherehis5the蓸e2仔hchckT2
-1Planck蔀c1
蓘蓸e5
-1k蔀蓡is(9)the2
constant,Boltzmannconstant,cisthespeedoflight,andTisthethermodynamictemperature.c1=2仔hc=3.7418伊10-16(W窑m2)andc2=hc=1.4388伊104(滋m窑K)karecalledthefirstandsecondradiationconstant.Theradiationexitanceofcommonisbodywhoseemittanceatwavelengthcalculatedasinformula(10):M(,T)=()伊Mblack(,T)Theradianceofthecommonbodyis:L(,T)=()伊Mblack(,T)/仔(11)Supposingthetransmittanceofconcreteouterwallandthetargetsurfaceareboth0,thentheemittanceofthematerialcouldbecalculatedbythematerialreflectancewhichcouldbeacquiredfromtheU.S.JPL(JetPropulsionLaboratory)ASTERSpectralLibrary[8]asinformula(12):()=1-()(12)Thereflectanceofaluminiuminwaveband3.0-5.0滋mfromASTERSpectralLibraryisshowninFig.3,andthecorrespondingemittanceisshowninFig.4.(10)()couldbe(6)()isthematerialreflectanceofthebuildingouterwallTheradiationamountreceivedbypointPisrelatedtothevalidradiationareaofthenearbybuildingtoP.TheradiancePreceivedfromthenearbybuildingreflectedsolarradiationcouldbedescribedasformula(7):Lrbsun()=Thefinal乙S0
Lsun()伊b()伊()伊r()dsinfluence(7)radiationcalculationformulaofpointPcouldbederivedbyformula(3)-(7)asformula(8):Linfl()=2SimulationcalculationForsimulation,theatmosphereofthevirtualsceneissetasU.S.standardatmospherein1976,dateisearlyinJuly,sunnywith30毅solarzenithangle,ignoringtheabsorptioneffectfromaerosolsorclouds.Assumingthematerialofthetargetsurfaceisaluminium,thematerialofbuildingouterwallisconstructionconcrete.Thesurfacetemperatuerofboththetargetandthebuildingis300K.Thesimulationcalculationisdoneinwaveband3.0-5.0滋m.圆.1Self-radiationofthetargetTheself-radiationoftargetatwavelengthis0304003-4
乙S0
(Lbp(,T)+Lsun()伊b()ds伊()伊r()(8)Fig.3Reflectanceofaluminiumin3.0-5.0滋m
红外与激光工程
第3期www.irla.cn第47卷Fig.4Emittanceofaluminiumin3.0-5.0滋m
Accordingtoformula(11),thecalculationresultofself-radianceofthetargetat300KisshowninFig.5.Fig.6Solarirradiance
Fig.7Targetreflectedsolarradiance
2.3Targetreflectedself-radiationofbuildingFig.5Radianceofaluminiumin3.0-5.0滋m
Thereflectanceofconstructionconcrete2.2TargetreflectedsolarradiationInthispaper,thesunisconsideredtobeaconstantlightsource.ThesolarradiationhasveryimportantinfluenceintheprocessBelowofisIRthehyperspectralradianceLrsun():Lrsun()=Lsun()伊r()=Isun()伊r()/仔couldbecalculatedbyModtran,wavelength.(13)WhereIsun()isthesolardirectirradiancewhichr
acquiredfromJPLASTERSpectralLibraryisshowninFig.8,andtheemittanceisshowninFig.9.simulation.computationformulaoftargetreflectedsolar()istheFig.8Reflectanceofconstructionconcrete
reflectanceofthetargetsurfacematerialatTheresultofthesolarirradianceforthescenecalculatedbyModtraninwaveband3.0-5.0滋misshowninFig.6.Accordingtoformula(13),thecalculatedresultoftargetreflectedsolarirradianceisshowninFig.7.Fig.9Emittanceofconstructionconcrete
0304003-5
红外与激光工程
第3期www.irla.cn第47卷Thetemperatureofthenearbybuildingouterwallis300K.Accordingtoformula(11),thecalculationresultoftheself-radianceoftheouterwallisshowninFig.10.Fig.12Radiancefromoneunitofthenearbybuilding
Fig.10Self-radianceofthenearbybuilding
Incurrentatmosphere,theIRradiationFig.13Targetreflectedradiancefromoneunitof
thenearbybuilding
atmospheretransmittanceindistanceof100minwavebandrange3.0-5.0滋mcalculatedbyModtranisshowninFig.11.Accordingtothecalculationresults,thetransmittanceisextremelyhighinalmostallthewavebandrangeexceptfor4.2-4.3滋m,wherethetransmittancededucedto0rapidly.Figure11showsclearevidencethattheradiancefromthebuildingcanreachthetargetwithonlyatinyenergyloss.2.4TargetreflectedradiancefromthenearbybuildingreflectedsolarradianceAccordingtoformula(6),consideringthebuildingasaLambertbody,thecalculatedresultsoftargetreflectedradiancefromoneunitofthenearbybuildingreflectedsolarradianceisshowninFig.14.Fig.11Transmittancein100m
Fig.14Targetreflectedradiancefromthenearbybuilding
reflectedsolarradiance
ThecalculationresultsofradiancereachesthetargetfromoneunitofthenearbybuildingisshowninFig.12.Accordingtoformula(4),thetargetreflectedradiancefromoneunitofthenearbybuildingisshowninFig.13.2.5RadiationinfluencefromoneunitofthenearbybuildingAccordingtoformula(8),theradiationinfluencefromthenearbybuildingisrelatedtothebuildingself-radiationandthebuilding0304003-6
红外与激光工程
第3期www.irla.cn第47卷reflectedsolarradiation.Thetotalradiationreflectedsolarradiationandthebuildingradiationinfluencetothetargetwhichiscombinedwiththereflectedbuildingself-radiationandthereflectedsolarradiationfromthebuildingtogetherinonesinglefigureasshowninFig.17.influencetopointPfromoneunitfornearbybuildingisshowninFig.15.Fig.15Totalradiationinfluence
Sofar,allthe4criticalfactorsinthescenewhichcaninfluencethetargetfinialradiationcharacteristicsarecalculated.Putthe4calculationresultstogetherforcomparisoninonesinglefigureasshowninFig.16.Thereflectedbuildingself-radiationandthereflectedsolarradiationfrombuildingaretheradiationinfluencetothetarget.Figure16showsclearevidencethatthesolarradiationisthemostcriticalfactorinthesceneinwavebandrange3.0-5.0滋m,whilethetargetself-radiationisataprettylowlevel.Thebuildingreflectedsolarradiationishigherthanthebuildingself-radiationinwavelengthband3.0-3.9滋m,whilethebuildingself-radiationismuchhigherthanthebuildingreflectedsolarradiationinwavelengthband3.9-5.0滋m.Fig.17Radiationcomparisoninthescene
Figure17showsthatthesolarradiationisdozensoftimestohundredstothetargetself-radiationinentirewavebandrange3.0-5.0滋m.That忆swhythetargetself-radiationcouldbeignoredintraditionalIRsimulationinwaveband3.0-5.0滋m.ButforhyperspectralIRsimulationwhichfocusesonthedifferencesinonesinglewavelength,thetargetself-radiationshouldnotbeignored.Forexample,inwavelength4.9滋m,thetargetself-radiationishigherthanthesolarradiation.Accordingtothecalculationresults,theradiationinfluencefromthebuildingandthesolarradiationinthevirtualsceneareatthesameorderofmagnitude.Inthewavebandrange3.0-4.4滋m,theradiationinfluenceisseveraltimessmallerthanthesolarradiation,whileitisbiggerin4.4-5.0滋m.Thecalculationresultsprovethattheradiationinfluenceismoreimportantthanthesolarradiationinsomewavelengthrange,andshouldbeseriouslyconsideredinthesimulationprocess.Fig.1criticalradiationfactors
猿.1InfluencewithchangesofthevalidradiationareaThecalculationresultsshowninFig.17aretargetbasedontheradiationfromonesingleunitfrom猿住nalysisofthesimulationresultsPutthetargetself-radiation,the0304003-7
红外与激光工程
第3期www.irla.cn第47卷thenearbybuilding.Withtheincreaseofthevalidradiationarea,theinfluenceeffectbecomeslargerandlarger,andtheradiationfromthebuildingbecomesthemostimportantradiationinmoreandmorewavelengths.AsshowninFig.18,whendoublingthevalidradiationarea,theradiationfromthebuildingbecomesthemostimportantradiationin4.3-5.0滋m.Whentriplingthevalidradiationarea,theradiationinfluencebecomesthemostimportantradiationin4.2-5.0滋m.Whenquadruplingthevalidradiationarea,theradiationinfluencebecomesthemostimportantradiationin4.0-5.0滋m.influencesinAtthemeantime,theradiationotherwavebandareenhancedWhenthetemperatureishigherthan290K,theself-radiationofthebuildingisstrongerthanthesolarradiationin3.0-5.0滋m.Asthetemperatureincreases,theinfluencelevelimprovessignificantly.Fig.19Comparisonoftheradiationatdifferenttemperatures
obviously.Accordingtothecalculation,whenthevalidradiationareaincreasedby12times,theradiationinfluencewillbecomethemostimportantradiationin3.0-5.0滋m.Thestudyshowsthatsurfacetemperatureofthebuildinghasanobviouseffectontheradiationcharacteristicoftarget,andtheinfluenceeffectbecomestrongerinhyperspectralsimulationconditionsespecially.4ConclusionAimingatthecharacteristicoftheIRhyperspectralsimulationandbuildingsthataremadeofconcrete,theradiationinfluencemodelispresentedAndinthispaperforthearetargetdoneinIRacharacteristicsimulationwithanearbybuilding.Fig.18Radiationinfluencewithdifferent
validradiationarea
simulationexperimentsconstructedvirtualsceneinwavebandrange3.0-5.0滋m.Thesimulationexperimentsresultsshowthattheradiationfromthenearbybuildinghashugeinfluenceonthefinalradiationcharacteristicofthetarget.Thesurfacetemperatureofthenearbybuilding,thevalidradiationareaandthedistancefromthetargettothebuildingarecriticalfactorsforthetargetfinalradiationcharacteristic.Tosumupinconclusion,inIRhyperspectralsimulation,thenearbybuildingsofthetargetcancausehugeinfluenceonthetargetfinalradiationcharacteristicatsomewavelength.Thereforethenearbybuildingfactorshouldbeserially3.2InfluencewithchangesofthesurfacetemperatureofthenearbybuildingFigure19showsthecomparisonofthetargetreflectedself-radiationofthebuildingatdifferenttemperatureswiththetargetself-radiationandthetargetreflectedsolarradiationatonesingleunitradiationarea.Thefigurerevealsthattheself-radiationofthebuildingisnothigherthanthebuildingreflectedsolarradiationin3.0-4.2滋m,whiletheself-radiationismuchhigherthanthebuildingreflectedradiationinwaveband4.2-5.0滋mwhenthebuilding忆stemperatureislessthan290K.0304003-8
红外与激光工程
第3期www.irla.cnconsideredinhyperspectralsimulation.Theradiationinfluencemodelpresentedinthispapercouldcalculatetheradiationinfluenceeffectivelyandprecisely.[5]
References院[1]
XuHong,WangXiangjun.Applicationsofmultispectral/hyperspectralimagingtechnologiesinmilitary[J].InfraredandLaserEngineering,2007,36(1):13-19.(inChinese)[6]
[2]
ZhengWeijian,LeiZhenggang,YuChunchaoe,etal.Researchonground-basedLWIRhyperspectralimagingromotegasdetection[J].SpectroscopyandSpectralAnalysis,2016,36(2):599-606.(inChinese)[7]
[3]
XieFeng,LiuChengyu,ShaoHonglan,etal.Scene-basedspectralcalibrationforthermalinfraredhyperspectraldata[J].InfraredandLaserEngineering,2017,46(1):0138001.(in[8]
Chinese)[4]
ChengMengshuo,QianYongqiang,WangNing,etal.A
0304003-9
第47卷temperatureandemissivityretrievalalgorithmbasedonatmosphericabsorptionfeaturefromhyperspectralthermalinfrareddata[J].JInfraredMillimWaves,2016,35(10):617-624.(inChinese)LiBo,ZhaoHuaici,HuaHaiyang.RadiationinfluenceresearchbetweenbuildingsinIRmultispectralsimulation[J].InfraredandLaserEngineering,2014,43(10):3222-3227.(inChinese)WangYachao,ZhaoHuijie,JiaGuorui.Modelingandsimulationoftopographiceffectsforhyperspectralremotesensing[J].JournalofBeijingUniversityofAeronauticsandAstronautics,2010,36(9):1131-1134.(inChinese)YanPeipei,MaCaiwen,ZheWenji.Inluenceofearth忆sreflectiveradiationonspacetargetforspacebasedimaging[J].ActaPhysSin,2015,(16):463-470.(inChinese)BaldridgeAM,HookSJ,GroveCI,etal.TheASTERspectral
library
version
2.0
[J].
Remote
Sensing
of
Environment,2009,113:711-715.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- baoaiwan.cn 版权所有 赣ICP备2024042794号-3
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务