(2)性质。相交两圆的连心线垂直平分公共弦。
相切两圆的连心线必经过切点。
16、圆中有关量的计算。
(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。
L=
(2)扇形的面积用S表示。
S= S=
(3)圆锥的侧面展开图是扇形。
r为底面圆的半径,a为母线长。
扇形的圆心角α=
S侧= ar S全= ar+ r2
大纲要求
1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系;
2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个
圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;
3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半
径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;
4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的
圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;
5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题;
6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”
③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。
相关示例 编辑本段
如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD
证明:连OA、OB
∵OA、OB是⊙O的半径
∴OA=OB
∴△OAB是等腰三角形
∵AB⊥DC
∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一)
∴弧AD=弧BD,∠AOC=∠BOC
∴弧AC=弧BC
相关推论 编辑本段
推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等 垂径定理
(证明时的理论依据就是上面的五条定理)
但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:
一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论
1.平分弦所对的优弧
2.平分弦所对的劣弧
(前两条合起来就是:平分弦所对的两条弧)
3.平分弦 (不是直径)
4.垂直于弦
5.经过圆心
圆幂定理
圆幂定理是平面几何中的一个定理。所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
基本信息
• 中文名称
圆幂定理
• 外文名称
power of a point
目录
1 发展历程
2 基本定义
3 定理内容
4 定理证明
展开
1 发展历程
2 基本定义
3 定理内容
4 定理证明
+1
QQ空间 新浪微博 腾讯微博 百度贴吧 人人 豆瓣
发展历程 编辑本段
圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳。根据两条与圆有相交关系的线的位置不同,有以下定理:
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD
从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。经过总结和归纳,
便得出了圆幂定理。
基本定义 编辑本段
定义:圆幂A=OP²-R²(称为P点对圆O的幂)
符号:圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
定理内容 编辑本段
过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA×PB=PC×PD 。
考虑经过P点与圆心O的直线,设PO交⊙O于M、N,R为圆的半径,则有
PA×PB=PC×PD=PM×PN=(OP+R)│OP-R│=│OP²-R²│
定理证明 编辑本段
图Ⅰ:相交弦定理。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以 △PAD∽△PCB。所以有:PA/PC=PD/PB,即:PA×PB=PC×PD 。
图Ⅱ:割线定理。如图,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以有△PAD∽△PCB,同上证得 PA×PB=PC×PD。
图Ⅲ:切割线定理。如图,连接AC、AD。∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有△PAC∽△PDA ,易证PA²=PC×PD。
图Ⅳ:PA、PC均为切线,则∠PAO=∠PCO=直角,在直角三角形中:OC=OA=R,PO为公共边,因此 △PAO≌△PCO。所以PA=PC,所以 PA²=PC²。
综上可知,PA×PB=PC×PD 是普遍成立的。证明完毕。
什么是区间根原理
实根分布的判别方法主要有三条: ①判别式△=b2-4ac的符号; ②对称轴的位置; ③端点函数值的正负.
当然,这三个条件不一定同时具备.一元二次方程的实根分布也称为区间根原理.