您好,欢迎来到保捱科技网。
搜索
您的当前位置:首页垂径定理

垂径定理

来源:保捱科技网


垂径定理 - 几何定理

垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。

推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧。

推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。

基本信息

• 中文名称

垂径定理

• 别称

圆的垂径定理

• 表达式

OA=OB

• 应用学科

数学

• 适用领域范围

制图

目录

1 垂径定理概念

2 其他资料

2.1 圆的有关性质

2.2 知识点

2.3 大纲要求

3 相关示例

4 相关推论

展开

1 垂径定理概念

2 其他资料

2.1 圆的有关性质

2.2 知识点

2.3 大纲要求

3 相关示例

4 相关推论

+1

QQ空间 新浪微博 腾讯微博 百度贴吧 人人 豆瓣

垂径定理概念 编辑本段

垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

其他资料 编辑本段

圆的有关性质

知识点

一、圆的定义。

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素:

垂径定理1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质。

1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

 平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。)

8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;

直线与圆没有交点,直线与圆相离。

2

9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。

则AB=

10、圆的切线判定。

(1)d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

11、圆的切线的性质(补充)。

(1)经过切点的直径一定垂直于切线。

(2)经过切点并且垂直于这条切线的直线一定经过圆心。

12、切线长定理。

(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。

(2)切线长定理。

∵ PA、PB切⊙O于点 A、B

∴ PA=PB,∠1=∠2。

13、内切圆及有关计算。

(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、求:AD、BE、CF的长。

分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求内切圆的半径r。

分析:先证得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

F。

b-r+a-r=c

得r=

(4)S△ABC=

14、(补充)

(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。

如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圆的两条弦AB与CD相交于点P,则PA•PB=PC•PD。

(3)切割线定理。

如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB•PC。

(4)推论:如图,PAB、PCD是⊙O的割线,则PA•PB=PC•PD。

15、圆与圆的位置关系。

(1)外离:d>r1+r2, 交点有0个;

外切:d=r1+r2, 交点有1个;

相交:r1-r2内切:d=r1-r2, 交点有1个;

内含:0≤d(2)性质。

相交两圆的连心线垂直平分公共弦。

相切两圆的连心线必经过切点。

16、圆中有关量的计算。

(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。

L=

(2)扇形的面积用S表示。

S= S=

(3)圆锥的侧面展开图是扇形。

r为底面圆的半径,a为母线长。

扇形的圆心角α=

S侧= ar S全= ar+ r2

大纲要求

1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系;

2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个

圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;

3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半

径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;

4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的

圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;

5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题;

6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”

③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。

相关示例 编辑本段

如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD

证明:连OA、OB

∵OA、OB是⊙O的半径

∴OA=OB

∴△OAB是等腰三角形

∵AB⊥DC

∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一)

∴弧AD=弧BD,∠AOC=∠BOC

∴弧AC=弧BC

相关推论 编辑本段

推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧

推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧

推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧

推论四:在同圆或者等圆中,两条平行弦所夹的弧相等 垂径定理

(证明时的理论依据就是上面的五条定理)

但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:

一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论

1.平分弦所对的优弧

2.平分弦所对的劣弧

(前两条合起来就是:平分弦所对的两条弧)

3.平分弦 (不是直径)

4.垂直于弦

5.经过圆心

圆幂定理

圆幂定理是平面几何中的一个定理。所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

基本信息

• 中文名称

圆幂定理

• 外文名称

power of a point

目录

1 发展历程

2 基本定义

3 定理内容

4 定理证明

展开

1 发展历程

2 基本定义

3 定理内容

4 定理证明

+1

QQ空间 新浪微博 腾讯微博 百度贴吧 人人 豆瓣

发展历程 编辑本段

圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳。根据两条与圆有相交关系的线的位置不同,有以下定理:

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD

从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。经过总结和归纳,

便得出了圆幂定理。

基本定义 编辑本段

定义:圆幂A=OP²-R²(称为P点对圆O的幂)

符号:圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

定理内容 编辑本段

过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA×PB=PC×PD 。

考虑经过P点与圆心O的直线,设PO交⊙O于M、N,R为圆的半径,则有

PA×PB=PC×PD=PM×PN=(OP+R)│OP-R│=│OP²-R²│

定理证明 编辑本段

图Ⅰ:相交弦定理。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以 △PAD∽△PCB。所以有:PA/PC=PD/PB,即:PA×PB=PC×PD 。

图Ⅱ:割线定理。如图,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以有△PAD∽△PCB,同上证得 PA×PB=PC×PD。

图Ⅲ:切割线定理。如图,连接AC、AD。∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有△PAC∽△PDA ,易证PA²=PC×PD。

图Ⅳ:PA、PC均为切线,则∠PAO=∠PCO=直角,在直角三角形中:OC=OA=R,PO为公共边,因此 △PAO≌△PCO。所以PA=PC,所以 PA²=PC²。

综上可知,PA×PB=PC×PD 是普遍成立的。证明完毕。

什么是区间根原理

实根分布的判别方法主要有三条: ①判别式△=b2-4ac的符号; ②对称轴的位置; ③端点函数值的正负.

当然,这三个条件不一定同时具备.一元二次方程的实根分布也称为区间根原理.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baoaiwan.cn 版权所有 赣ICP备2024042794号-3

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务