2.8 试对下图所示的系统方块图进行化简并求出其闭环传递函数C(s)/R(s) 化简得:
C(s)G1G3(G2+H1)
=
R(s)1+G2H2−G3H3(H1+G2)+G1G3(G2+H1)
2.9 化简得:
C(s)G1G2G3G4 =R(s)(1+G1H1)(1+G4H4)[(1+G2H2)(1+G3H3)+G2G3H5]+G1G2G3G4H6
2.10求信号流图的传递函数 (a)
解:有6个前向通道:
Q1(s)=G1G3G7Q2(s)=G1G6G8Q3(s)=G2G4G8Q4(s)=G2G5G7Q5(s)=−G1G6H2G5G7Q6(s)=−G2G5H1G6G8共有三个回路,分别为:
L1(s)=−G3H1L2(s)=−G4H2L3(s)=G5G6H1H2
(s)=1+G3H1+G4H2−G5G6H1H2+G3H1G4H2
1(s)=1+G4H22(s)=13(s)=1+G3H14(s)=15(s)=16(s)=1G1G3G7(1+G4H2)+G1G6G8+G2G4G8(1+G3H1)+G2G5G7−G1G6H2G5G7−G2G5H1G6G8∴G(s)=1+G3H1+G4H2−G5G6H1H2+G3H1G4H2
(b)
共有4条前向通道,分别为:
Q1(s)=G1G2G3G4G5G6Q2(s)=G3G4G5G6Q3(s)=G1G6Q4(s)=−G6H1共有9条回路,分别为:
L1(s)=−G2H1L2(s)=−G4H2L3(s)=−G6H3L4(s)=−G3G4G5H4L5(s)=−G1G2G3G4G5G6H5 L6(s)=H1H4L7(s)=−G3G4G5G6H5L8(s)=H1H5G6L9(s)=−G6H5G1(s)=1+G2H1+G4H2+G6H3+G1G2G3G4G5G6H5+G2H1G4H2+G2H1G6H3+G4H2G6H3+G2H1G4H2G6H3−H1H4+G3G4G5G6H5 −G1H5G6+G6H5G1−G4H2H1H5G6+G4H2G1H5G6−G4H2H1H4
1(s)=12(s)=13(s)=1+G4H24(s)=1+G4H2G1G2G3G4G5G6+G3G4G5G6+G1G6(1+G4H2)−G6H1(1+G4H2) ∴G(s)=(s)(c)
共有2条前向通路,分别是:
Q1(s)=abcdQ2(s)=aed
共有6条回路,分别是:
L1(s)=bgL2(s)=chL3(s)=fL4(s)=kbcL5(s)=keL6(s)=eghabcd+aed(1−f) ∴G(s)=1−bg−ch−f−kbc−ke−egh+kfe (d)
有4条前向通道,分别是:
Q1(s)=adeQ2(s)=aQ3(s)=bcdeQ4(s)=bc有4条回路,分别是:
L1(s)=−cfL2(s)=−egL3(s)=−adehL4(s)=−bcdeh
ade+a+aeg+bcde+bc+bceg ∴G(s)=1+cf+eg+adeh+bcdeh+cfeg
2.11画出方块图对应的信号流图,并计算其闭环传递函数
-G2G1G3-H2-G4H1 G1G3−G1G2+G1G3G4H2−G1G2G4H2 ∴G(s)=1+G1G3H1H2−G1G2H1H2
2.13 画出极坐标图,求与实轴相交的频率和相应的幅值。 (1)G(s)=1
(s+1)(2s+1)第(1)题图
与实轴无交点。
(2)G(s)=1
s(s+1)(2s+1)21令Im[G(jw)]=0,得与实轴相交处ω=±,G(jω)=
32第(2)题图
(3)G(s)=1 2s(s+1)(2s+1)
与实轴无交点。
(4)G(s)=(0.2s+1)(0.025s+1) 3s(0.005s+1)(0.001s+1)
在非常靠近原点的位置与实轴有2个交点。以本图的比例不能看到,但可以通过计算得到。
−Kw2−Kw2
2.14 (1) G(jw)== 2(0.2jw+1)(0.02jw+1)1−0.004w+0.22jw幅频特性:|G(jw)|=
Kw2(1−0.004w)+(0.22w)222
L(w)=20lg|G(jw)|=20lg 转折点为5,50.
相频特性:∠G(jw)=π-arctan
Kw2
(1−0.004w)+(0.22w)
22
2
0.22w 21−0.004w25,
当截止频率wc=5rad/s时,|G(jw)|=1,所以增益K=2
Ke−0.1jwKe−0.1jw(2) G(jw)==
jw(jw+1)(0.1jw+1)−1.1w2+(w−0.1w3)j幅频特性:|G(jw)|=
K(1.1w)+(w−0.1w)2232
L(w)=20lg|G(jw)|=20lg转折点为1,10;
K(1.1w)+(w−0.1w)2232
相频特性:∠G(jw)=-0.1w-π/2-arctanw-arctan0.1w 当截止频率wc=5rad/s时,|G(jw)|=1, 20lgK-20lgw|w=5-20lgw|w=5=0 K=25;
2.15
解:通过作图,得到三个转折点分别为(0.48,20.5),(3,-10)和(8,-17.5),
因此,ω1=0.48rad/s,ω2=3rad/s,ω3=8rad/s,可写出如下传递函数:
ssK(1+)(1+)38 G(s)=ss(1+)0.480.48
当ω→∞时G(s)=20lgK+20lg=−17.5,可得K=6.6
3×8ss6.6(1+)(1+)38 所以G(s)=ss(1+)0.48
2.16 设三个最小相位系统的折线对数幅频特性 (1)写出对应的传递函数
(2)绘出对数相频曲线和幅相曲线。
(a)解:比例环节、两个惯性环节构成,传递函数为: G(s)=
ss)(1+)(1+w2w1K,G(jw)=
jwjw(1+)(1+)w1w2K,
由伯得图可得20lgK=40;K=100;
100 G(s)=ss(1+)(1+)ω1ω2
(b)解:积分环节、惯性环节、一阶微分环节构成
K(1+传递函数为:G(s)=sω1s))
s2(1+ω2当w=wc时,20lgK+20lg
wcw2-20lgwc-20lgc=0 w1w2wc2w1s+(1)wc2w1w2w1求得:K=,故G(S)=
sw2
)s2(1+w2
(c)解:微分环节、惯性环节构成
传递函数为:G(s)=ss)(1+)(1+w3w2Ks,由伯德图可知,当w=w1时有:
20lgK+20lgw1=0,解的K=
1, w1s
故得到:G(s)=
(1+
sω1)(1+
sω2ω3
)
2.17 绘制下列传递函数的折线对数幅频特性 (1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)