KyushuUniversity
21stCenturyCOEProgram
DevelopmentofDynamicMathematicswith
HighFunctionality
Humanfingerveinimagesarediverseanditspatternsareusefulforpersonalidentification
T.Yanagawa,S.Aoki
T.Ohyama
MHF2007-12
(ReceivedApril5,2007)
FacultyofMathematicsKyushuUniversityFukuoka,JAPAN
Humanfingerveinimagesarediverseanditspatterns
areusefulforpersonalidentification
TakashiYanagawa∗,
SatoshiAoki†,
and
TetsujiOhyama‡
Abstract
Diversityofhumanfingerveinimagesisshownbyextractingtheirpatternsfromtherightandleftindexfingersandmiddlefingersof506personandtheusefulnessoffingerveinspatternsforpersonalidentificationisshownbyevaluatingthefalseacceptanceandfalserejectionrates.
Keywords:beta-binomialdistribution,biometry,falseacceptancerate,falserejectionrate,veinpatterns
1Introduction
Ourfingerveinsarenotvisibleand,forexample,wedonotknowwhethertheimageofmyrightindexfingerveinissimilartothatofmyfriends,oreventothatofmymiddlefinger,ormyleftindexfinger.Infact,nothinghavebeenknownaboutnumbers,locationsandlengthsoffingerveins.However,recenttechnologiesmadeitpossibletogetsharpveinimages.Kounoetal.(2000)developedfeatureextractionoffingerveinpatternsbasedonrepeatedlinetrackingandFan(2004)usedthermalimagesofvein-patterns.AmongthemwedealwithinthispaperistheonedevelopedbytheCentralResearchLaboratory,Hitachi,Ltd(Miuraetal.,2002,2004a,2004b).Themethodextractsfingerveinimagesasfollows(Miuraetal.,2002).Firstanewideaoflinetrackingisintroduced.Secondthelinetrackingisconductedbystartingatseveralrandompositionstotakeintoaccountunknownnumbers,locationandlengthofveins.Thirdweobtainthefingerveinpatternsastheoneshavinghighfrequencyinthetotalnumberofpixelstobetracked.
Figure1showstheresultofextractedfingerveinpatterns,representedfromMiuraetal.(2002).ReadersshouldrefertoMiuraetal.(2002)fordetails.Weextractedveinpatternsfromtherightindexandmiddlefingersandthecorrespondingpatternsfromtheleftfingersofabout500person.Hereweshowdiversityofhumanfingerveinimagesanddiscusstheusefulnessoffingerveinsforpersonalidentification.Theargumentsinthispaperaremainlybasedontheevaluationofthefalseacceptancerateandfalserejectionrate.
BiostatisticsCenter,KurumeUniversity,Fukuoka,830-0011,Japan
DepartmentofMathematicsandComputerScience,GraduateSchoolofScienceandEngineering,KagoshimaUniversity,Kagoshima0-0065,Japan‡
BiostatisticsCenter,KurumeUniversity,Fukuoka,830-0011,Japan
†∗
1
Figure1:Extractedfingerveinimage(left)andpatterns(right)
2Diversityoffingerveinpatterns
Thepixelsthatconsistofanextractedveinpatternareclassifiedintothreecategories;VEIN,AMBIGUOUS,andBACKGROUND.Twoveinpatternsareoverlappedandarecomparedpixelbypixel.IfapixelthatisclassifiedintoVEINoverlapswithapixelclassifiedintoBACKGROUND,thepairofthepixelissaidtobemismatched.Notethatitisnotsymmetric,i.e.,suppose,forexample,thattherearetwofingerpatterns,sayRandL,whichconsistofthreepixelsclassifiedinto(AMBIGUOUS,VEIN,BACKGROUND)and(AMBIGUOUS,VEIN,VEIN),thenthereisnomismatchingfromRtoL,butonemismatchingfromLtoR.Themismatchrate(MMR)isdefinedas
MMR=
totalnumberofmismatchedpairs
.
totalnumberofpixelsclassifiedintoVEINinthetwofingerpatterns
TheMMRiscomputedfrom506person(405male,101female),whoseagedistributionisgiveninTable1.
Table1:Agedistributionofpersonwhoaretested
Agenumbers
10-191
20-29149
33-39220
40-4991
50-5941
refusedtotell
4
total506
Figure2showshistogramsoftheMMRcomputedfrom1,012(=506person×2)pairsofidenticalrightindexfingersand255,530(=506×505)pairsofunrelatedrightindexfingers.Thefigureshowsthattwohistogramsareseparated,indicatingthesignificantdifferenceofveinpatternsoftherightindexfingerbetweenindividuals.Figure3showshistogramsoftheMMRcomputedfrom255,530pairsofrightmiddlefingerandrightindexfingerfromidenticalperson(dark)and255,530pairsofunrelatedrightindexfingers(light).Thefigureshowsthattwohistogramsarealmostcompletelyoverlapped;thatoftwofingersoftheidenticalpersonshiftedtoleftslightly.Thisindicatesthatthedifferenceoftheveinpatternsoftherightmiddlefingerandrightindexfingersofidenticalpersonissimilartothedifferenceoftheveinpatternsoftherightindexfingersofdifferentperson.Figure4showshistogramsoftheMMRfrom255,530pairsoftherightindexfingersandleftindexfingersofidenticalperson(dark)andthatfrom255,530pairsofunrelatedrightindexfingers(light).Againtwohistogramsalmostcompletelyoverlap,showingthatthedifferenceoftheveinpatternsoftherightindexfingerandleftindexfingerfromanidenticalpersonissimilartothedifferenceoftheveinpatternsoftherightindexfingers
2
㪇㪅㪈㪍㪇㪅㪈㪋㪇㪅㪈㪉㪇㪅㪈㪇㪅㪇㪏㪇㪅㪇㪍㪇㪅㪇㪋㪇㪅㪇㪉㪇㪇㪅㪇㪈Identical right index fingers Unrelated right index fingers 㪝㫉㪼㫈㫌㪼㫅㪺㫐㪇㪅㪉㪈㪤㫀㫊㫄㪸㪺㪿㩷㫉㪸㫋㪼㪇㪅㪋㪈㪇㪅㪍㪈 Figure2:Histogramsofmismatchratescomputed(MMR)from1,078pairsofidenticalrightindexfingerand254,012pairsofunrelatedindexfinger.
㪇㪅㪊㪇㪅㪊㪝㫉㪼㫈㫌㪼㫅㪺㫐㪝㫉㪼㫈㫌㪼㫅㪺㫐㪇㪅㪉㪇㪅㪉㪇㪅㪈㪇㪅㪈㪇㪇㪅㪊㪍㪇㪅㪋㪍㪤㫀㫊㫄㪸㫋㪺㪿㩷㫉㪸㫋㪼㪇㪅㪌㪍㪇㪇㪅㪊㪍㪇㪅㪋㪍㪤㫀㫊㫄㪸㫋㪺㪿㩷㫉㪸㫋㫀㫆㪇㪅㪌㪍Figure3:HistogramsofmismatchratesFigure4:Histogramsofmismatchrates
(MMR)computedfrom254,012pairsoftherightindexfingersandmiddlefingersofidenticalperson(dark)and254,012pairsofunrelatedindividuals(light).
(MMR)computedfrom254,012pairsoftherightindexfingersandleftindexfingersofidenticalperson(dark)and254,012pairsofunrelatedindividuals(light).
ofdifferentindividuals.Theseobservationsindicatethattwofingersareidenticalifandonlyiftheyarethesamefingerinthesamehandofthesameperson,andalltheothercasescanbetreatedsimplyasunrelated.
ThereproducibilityofthedistributionsoftheMMRisfairlygood.Forexample,Table2showsthemeansandstandarddeviationsofthedistributionsoftheMMRofunrelatedrightindexfingersthatareobtainedbymeasuring506individuals10times;ineachtimethemeanandthestandarddeviationarecomputedfrom255,530pairsofunrelatedindexfingers.Thetableshowsthatthevariabilitiesofthemeanands.d.throughoutthose10examinationsarenegligible.
3Personalidentification
Supposethatafingerveinpatternofanindividualisregisteredandanewfingerpatternisarrived.Figure2suggeststhatwemayjudgethatthenewarrivalisunrelatedifMMR>C,andidenticaltotheregisteredifMMR≤Cforsomecut-offpointC.Thegoodnessofthispersonalidentificationisevaluatedbythefalserejectionrate(FRR)
3
Table2:Themeansandstandarddeviation(s.d.)ofthedistributionsofthemismatchrates(MMR)in10repeatedexaminations:ineachexaminationthemeanands.d.arecomputedfrom255,530unrelatedpairsoftherightindexfinger.
1
means.d.
0.48490.0309
20.48540.0308
30.48590.0309
40.48560.0308
50.48630.0308
50.48580.0307
70.48600.0310
80.48620.0309
90.48630.0309
100.48610.0308
pooled0.48590.0308
㪇㪅㪈㪍㪇㪅㪈㪋㪇㪅㪈㪉㪇㪅㪈㪇㪅㪇㪏㪇㪅㪇㪍㪇㪅㪇㪋㪇㪅㪇㪉㪇㪇㪅㪇㪉㪇㪅㪇㪎㪇㪅㪈㪉㪤㫀㫊㫄㪸㫋㪺㪿㩷㫉㪸㫋㪼㪇㪅㪈㪋㪝㫉㪼㫈㫌㪼㫅㪺㫐㪜㫄㫇㫀㫉㫀㪺㪸㫃㪙㪙㪃㩷㫄㪔㪋㪇㪇㪃㩷㪸㫃㫇㪿㪸㪔㪏㪅㪋㪐㪃㪹㪼㫋㪸㪔㪐㪋㪅㪈㪐㪝㫉㪼㫈㫌㪼㫅㪺㫐㪇㪅㪈㪉㪇㪅㪈㪇㪅㪇㪏㪇㪅㪇㪍㪇㪅㪇㪋㪇㪅㪇㪉㪥㫆㫉㫄㪸㫃㪜㫄㫇㫀㫉㫀㪺㪸㫃㪇㪅㪈㪎㪇㪇㪅㪉㪐㪇㪅㪊㪐㪇㪅㪋㪐㪤㫀㫊㫄㪸㫋㪺㪿㩷㫉㪸㫋㪼㪇㪅㪌㪐Figure5:HistogramsofmismatchratesFigure6:Histogramsofmismatchrates
(MMR)computedfrom1,012pairsofiden-ticalrightindexfinger(empirical)andBeta-Binomialdistributionwithm=400,=8.49and=94.19.
(MMR)computedfrom2,540,120unre-latedpairsofrightindexfinger(empirical)andnormaldistributionwithmean=0.4859ands.d.=0.0308.
andfalseacceptancerate(FAR);definedbyFRR=Pr(MMR>C|identicalfingers)andFAR=Pr(MMR≤C|unrelatedfingers).
WeintroduceamathematicalmodeltoevaluatetheFRRandFARfromthedata.LetmbethetotalnumberofpixelsclassifiedintoVEINinthetwoveinpatterns,andXibeabinaryvariabletaking1withprobabilityPiftheithpairofthepixelsismismatchedand0otherwise,wherePrepresentsthemismatchrate.ThemismatchratePisestimatedby
m1¯=Xi.X
mi=1Sinceaveinisconnected,X1,...,Xmwouldnotbestatisticallyindependent.Further-moremisunknownanddependsonthelengthoftheveins.Thesecharacteristicsmustbetakenintoaccountinthemodeling.AssumethatPisarandomvariablefollowingabetadistributionofparametersαandβ,andthat,forgivenP=p,X1,...,XmareconditionallyindependentandidenticallydistributedwithaBernoullidistributionwithPr(Xi=1|P=p)=p,wheremisanunknownconstant.Itfollowsundertheseassump-¯followsabeta-binomialdistributionandthatthemean,varianceandthetionsthatmX
¯aregivenbythirdcentralmomentofX
¯)=π,V(X¯)=π(1−π)1+(m−1)φE(X,
m1−φ
32π(1−π)¯−E(X¯)=EXφ3(π−1)+2φ(π−2)m+3(π−φ−1)m+2π−1,
m2(1+φ)(1+2φ)
4
where
π=
α
,α+β
φ=
1
.α+β
3.1EstimatingtheFRR
Parametersα,βandmareestimatedtobe8.49,94.19and400byapplyingthemethodofmoment(see,forexampleBickelandDoksom,1976,p.92)totheMMRdatafrom1,012(=506person×2)pairsofidenticalrightindexfingers.Figure5showsthehistogramandfittedbeta-binomialdistribution;showingthefittingisfairlygood.ThesecondcolumnofTable3givestheestimatedFRRfromthebeta-binomialdistributionforselectedvaluesofthecut-offpoints.
3.2EstimatingtheFAR
Themeansands.d.ofthe10examinationsinTable2issoclosethatwepooledthosedata,
ˆ=391.116andmandobtainedestimatesαˆ=369.593,βˆ=400from2,540,120unrelated
pairsofrightindexfingeraltogether.Whenα+βislarge,thebeta-binomialdistributionisapproximatedbyanormaldistribution;inparticular,theapproximationisgoodwhenα/(α+β)iscloseto0.5.Figure6showsthehistogramfrom2,540,120unrelatedpairs(empirical)andfittednormaldistributionN(0.4859,0.03082),showingthatthefittingisprettygood.ThethirdcolumnofTable2givestheFARestimatedfromthefittednormaldistribution.95%confidenceintervals(c.i.)oftheFARareobtainedfrom10,000bootstrapsamplesconsistedof1,000samplesdrawnfromeachofthepopulationinTable2.
Table3:Estimatedfalseacceptancerate(FRR)andfalserejectionrate(FAR).
Cut-offpoint
0.2700.2750.2800.2850.2900.2950.3000.3050.310
FRR3.16E-062.03E-061.30E-068.23E-075.20E-073.27E-072.04E-071.27E-077.86E-08
FAR1.31E-124.10E-121.25E-113.73E-111.08E-103.07E-108.47E-102.28E-095.97E-09
95%c.i.ofFAR6.32E-132.07E-126.41E-122.00E-115.82E-111.74E-104.84E-101.35E-093.69E-09
2.56E-127.80E-122.45E-116.96E-111.94E-105.49E-101.46E-093.85E-099.81E-09
3.3Riskofthepersonalidentification
Thevalueofthecut-offpointCmustbedecidedfromFRRandFARwhenweusetheabovedeviceforpersonalidentification.SimilarlytothetypeIandtypeIIerrorsinthetheoryofthestatisticaltestinghypothesis,FRRandFARcompete,i.e.,whenthecut-offpointCincreasesFRRdecreases,whereasFARincreases,andviceversa.TheFARshouldbemoreimportantinpracticethanFRRforthepurposeofpreservingsecurity.Inadditionweshowherethatitisdirectlyrelatedtotheriskforpersonalidentification.
5
Supposethatapersonregistershis/herfingerpatterntothedevice,andthatanewpersonarrivesonsomedayslaterwhoisunknowntobewhetheridenticaltotheregisteredpersonornot.Thenthemainconcernoftheuserofthedevicewouldbetheriskthatifthepersonpassesthedeviceandyethe/sheisnotidenticaltotheregistered,i.e.,cheatercouldimpersonatetheregisteredpersonforsomemaliciouspurpose.Theriskmayberepresentedbymeansofprobability,Pr(different|passed),andbeestimatedasfollows.LetPr(identical)andPr(different)betheprobabilitiesthatthenewpersonisidentical/differenttotheregisteredperson,wherePr(identical)+Pr(different)=1.ThenitfollowsfromtheBayestheoremthat
FAR·Pr(different)
Pr(different|passed)=.
FAR·Pr(different)+(1−FRR)Pr(identical)IfwehavenoinformationonPr(identical)andPr(different),itwouldbenaturaltosetPr(identical)=Pr(different)=0.5.Thenwehave
FAR
Pr(different|passed)=FAR,
FAR+(1−FRR)sinceFARFRR1.Similarly,wemayshowthatPr(identical|notpassed)FRRwhenPr(identical)=Pr(different)=0.5.Butthisprobabilitywillbelessimportantthantheaboveprobabilityfromtheviewpointofpreservingsecurity.
3.4Universalunequalnessofthehumanfingervein
AlsoFARisusefultoassessuniversalunequalnessofthehumanfingervein.SupposeNbethesizeofpopulationthatweconsider.Nmaybe,forexample,thesizeofthepopulationsinTokyo(N∼12millions),thepopulationsinJapan(N∼120millions)orthepopulationsintheworld(N∼6.5billions).Supposethatonepersonischosenrandomlyfromthepopulationandregistershis/herfingerveintothisdevice.Then”howmanypersonsarethereinthepopulationwhoaregoingtobejudgedas“identical”tothisperson?”wouldbeaninterestingquestion.Thequestionisansweredasfollows.Supposethatwenumberallthepersonsofthepopulationas1,2,...,N,andsupposetheperson1registershisfingerveinwithoutlossofgenerality.LetYibetherandomvariabledefinedas
1,personiisjudgedas“identical”totheperson1,
Yi=
0,otherwise,fori=2,...,NandY=
Ni=2
Yi.Thentheexpectedvalueofthenumberofthepersons
Ni=2
whoissupposedtobejudgedas“identical”totheperson1is
E(Y)=
E(Yi)=(N−1)FARN·FAR.
Table4liststhisexpectedvaluesforsomeselectedvaluesofCandN.Wemayesteem
thosevaluesinthetableastheindexofuniversalunequalnessofpersonalidentificationbymeansoffingerveins.Fromthetable,forexample,theuniversalunequalnessofthehumanfingerveinwouldbestatisticallyguaranteedinJapan,whenwesetCasC≤0.310.Ontheotherhand,ifwewanttoensuretheuniversalunequalnessofthefingerveinintheworld,wewouldhavetosetCasC≤0.290.
6
Table4:Expectedvalueofthenumberofpersonswhojudgedas“identical”tosomespecificpersonintheNpopulations
Cut-offpointc
0.2700.2750.2800.2850.2900.2950.3000.3050.310
N=1million0.000000.000000.000010.000040.000110.000310.000850.002280.00597
N=10millions
0.000010.000040.000130.000370.001080.003070.008470.022800.05970
N=100millions
0.000130.000410.001250.003730.010800.030700.084700.228000.59700
4Discussion
Weinvestigatedthediversityofhumanfingerveinpatternsbycomparingtherightandleftindexfingersandmiddlefingersofabout500personsandconsidereditsusefulnessforpersonalidentification.Thevalidityofourpersonalidentificationisevaluatedbytwoprobabilitiesinherenttothedevice,thefalserejectionrate(FRR)andthefalseacceptancerate(FAR).FromFRRandFAR,wecanestimatethereliabilityofthepersonalidentificationbythehumanfingervein.
Thepersonalidentificationsarealsoreportedbythehumanirispatterns.Forexample,DaugmanandDowning(2001)gavethroughinvestigationontherandomnessofunrelatedhumanirispatternsof2.3milliondifferentpairsofeyeimagesandconsidereditsuseforpersonalidentifications.TheymeasuredtheHammingdistancebetweenunrelatedirispatternsandobservedthatthedistributionoftheHammingdistanceiswellapproximatedbythebinomialdistribution.Inthepresentmanuscript,ontheotherhand,weobservedthatthedistributionofthemismatchrateofthefingerveinscannotbeapproximatedfairlybybinomialdistribution.Instead,weconsiderthebeta-binomialdistributionforthemismatchrate,reflectingthefeatureoftheover-dispersion.
ComparingthedistributionofourmismatchratebetweenunrelatedfingerveinstothatoftheHammingdistanceofirispatterngiveninDaugmanandDowning(2001),theestimatedstandarddeviationis0.0308inourstudy,whileitis0.032inDaugmanandDowning(2001).Thisresultimpliesthatthediversityamongthedifferentpersonsofthehumanfingerveinissimilartothatoftheirispattern,andourmethodalsomaybeutilizedforthepersonalidentification.
Acknowledgments
WegreatlyacknowledgeDr.TakafumiMiyatake,theChiefResearcher,theCentralResearchLaboratory,Hitachi,Ltd,forhiscooperationofobtainingthedatainthestudyfromwhichFRRandFARarecomputed.ThisresearchwasconductedundertheauspicesoftheJapanTransdisciplinaryFederationofScienceandTechnology.Theirsupportforthisresearcharealsogreatlyacknowledged.
7
References
[1]Peter,J.BickelandKjell,A.DoksumMathematicalStatistics,PrenticeHallNew
Jersey,1976.[2]JohnDaugmanandCathrynDowningEpigeneticrandomness,complexityandsin-gularityofhumanirispatterns,ProceedingsoftheRoyalSociety,B,268,BiologicalSciences:1737-1740(2001).[3]M.Kouno,H.Ueki,andS.UmemuraAnewmethodfortheidentificationofin-dividualsbyusingofveinpatternmatchingofafinger,ProceedingsoftheFifthSymposiumonPatternMeasurement,(Yamaguchi,Japan),9-12,2000.[4]Kuo-ChionFanandChin-LungLinTheuseofthermalimagesofpalm-dosavein-patternsforbiometricsverification,Proceedingsof17thInternationalConferenceonPatternrecognition,ICPR2004,Vol4,22-26,Aug2004.[5]NaotoMiura,AkioNagasaka,TakafumiMiyatakeAutomaticfeatureextraction
fromnon-uniformfingerveinimageanditsapplicationtopersonalidentification,ProceedingsofTheInternationalAssociationforPatternRecognitionWorkShoponMachineVisionApplications(Nara,Japan),7-4:253-256,Dec11-13,2002.[6]NaotoMiura,AkioNagasaka,TakafumiMiyatakeFeatureextractionoffinger-vein
patternsbasedonrepeatedlinetrackinganditsapplicationtopersonalidentification,MachineVisionandApplicationsComputerScienceandEngineering15(4):194-203(2004).[7]NaotoMiura,AkioNagasaka,TakafumiMiyatakeFeatureextractionofingervein
patternsbasedoniterativelinetrackinganditsapplicationtopersonalidentification,SystemsandComputersinJapan35(7):61-71(2004)
8
ListofMHFPreprintSeries,KyushuUniversity
21stCenturyCOEProgram
DevelopmentofDynamicMathematicswithHighFunctionality
MHF2005-1HidekiKOSAKI
Matrixtraceinequalitiesrelatedtouncertaintyprinciple
MHF2005-2MasahisaTABATA
DiscrepancybetweentheoryandrealcomputationonthestabilityofsomefiniteelementschemesMHF2005-3YukoARAKI&SadanoriKONISHI
FunctionalregressionmodelingviaregularizedbasisexpansionsandmodelselectionMHF2005-4YukoARAKI&SadanoriKONISHI
Functionaldiscriminantanalysisviaregularizedbasisexpansions
MHF2005-5KenjiKAJIWARA,TetsuMASUDA,MasatoshiNOUMI,YasuhiroOHTA&
YasuhikoYAMADA
Pointconfigurations,CremonatransformationsandtheellipticdifferencePainlev´eequationsMHF2005-6KenjiKAJIWARA,TetsuMASUDA,MasatoshiNOUMI,YasuhiroOHTA&
YasuhikoYAMADA
ConstructionofhypergeometricsolutionstotheqPainlev´eequationsMHF2005-7HirokiMASUDA
Simpleestimatorsfornon-linearMarkoviantrendfromsampleddata:I.ergodiccasesMHF2005-8HirokiMASUDA&NakahiroYOSHIDA
EdgeworthexpansionforaclassofOrnstein-Uhlenbeck-basedmodelsMHF2005-9MasayukiUCHIDA
ApproximatemartingaleestimatingfunctionsundersmallperturbationsofdynamicalsystemsMHF2005-10RyoMATSUZAKI&MasayukiUCHIDA
One-stepestimatorsfordiffusionprocesseswithsmalldispersionparametersfromdiscreteobservationsMHF2005-11JunichiMATSUKUBO,RyoMATSUZAKI&MasayukiUCHIDA
EstimationforadiscretelyobservedsmalldiffusionprocesswithalineardriftMHF2005-12MasayukiUCHIDA&NakahiroYOSHIDA
AICforergodicdiffusionprocessesfromdiscreteobservations
MHF2005-13HiromichiGOTO&KenjiKAJIWARA
GeneratingfunctionrelatedtotheOkamotopolynomialsforthePainlev´eIVequationMHF2005-14MasatoKIMURA&Shin-ichiNAGATA
PreciseasymptoticbehaviourofthefirsteigenvalueofSturm-Liouvilleprob-lemswithlargedriftMHF2005-15DaisukeTAGAMI&MasahisaTABATA
Numericalcomputationsofameltingglassconvectioninthefurnace¯MHF2005-16RaimundasVIDUNAS
NormalizedLeonardpairsandAskey-Wilsonrelations¯MHF2005-17RaimundasVIDUNAS
Askey-WilsonrelationsandLeonardpairs
MHF2005-18KenjiKAJIWARA&AtsushiMUKAIHIRA
Solitonsolutionsforthenon-autonomousdiscrete-timeTodalatticeequationMHF2005-19YuuHARIYA
ConstructionofGibbsmeasuresfor1-dimensionalcontinuumfieldsMHF2005-20YuuHARIYA
IntegrationbypartsformulaefortheWienermeasurerestrictedtosubsetsinRdMHF2005-21YuuHARIYA
Atime-changeapproachtoKotani’sextensionofYor’sformulaMHF2005-22TadahisaFUNAKI,YuuHARIYA&MarkYOR
WienerintegralsforcenteredpowersofBesselprocesses,IMHF2005-23MasahisaTABATA&SatoshiKAIZU
Finiteelementschemesfortwo-fluidsflowproblems
MHF2005-24Ken-ichiMARUNO&YasuhiroOHTA
DeterminantformofdarksolitonsolutionsofthediscretenonlinearSchr¨odingerequation¯MHF2005-25AlexanderV.KITAEV&RaimundasVIDUNAS
QuadratictransformationsofthesixthPainlev´eequation
MHF2005-26ToruFUJII&SadanoriKONISHI
NonlinearregressionmodelingviaregularizedwaveletsandsmoothingparameterselectionMHF2005-27ShuichiINOKUCHI,KazumasaHONDA,HyenYealLEE,TatsuroSATO,
YoshihiroMIZOGUCHI&YasuoKAWAHARA
Onreversiblecellularautomatawithfinitecellarray
MHF2005-28ToruKOMATSU
CycliccubicfieldwithexplicitArtinsymbols
MHF2005-29MitsuhiroT.NAKAO,KoujiHASHIMOTO&KaoriNAGATOU
Acomputationalapproachtoconstructiveaprioriandaposteriorierrorestimatesforfiniteelementapproximationsofbi-harmonicproblemsMHF2005-30KaoriNAGATOU,KoujiHASHIMOTO&MitsuhiroT.NAKAO
NumericalverificationofstationarysolutionsforNavier-StokesproblemsMHF2005-31HidefumiKAWASAKI
Adualitytheoremforathree-phasepartitionproblem
MHF2005-32HidefumiKAWASAKI
Adualitytheorembasedontrianglesseparatingthreeconvexsets
MHF2005-33TakeakiFUCHIKAMI&HidefumiKAWASAKI
AnexplicitformulaoftheShapleyvalueforacooperativegameinducedfromtheconjugatepointMHF2005-34HidekiMURAKAWA
Aregularizationofareaction-diffusionsystemapproximationtothetwo-phaseStefanproblemMHF2006-1MasahisaTABATA
NumericalsimulationofRayleigh-Taylorproblemsbyanenergy-stablefiniteelementschemeMHF2006-2Ken-ichiMARUNO&GRWQUISPEL
Constructionofintegralsofhigher-ordermappings
MHF2006-3SetsuoTANIGUCHI
OntheJacobifieldapproachtostochasticoscillatoryintegralswithquadraticphasefunctionMHF2006-4KoujiHASHIMOTO,KaoriNAGATOU&MitsuhiroT.NAKAO
Acomputationalapproachtoconstructiveapriorierrorestimateforfiniteelementapproximationsofbi-harmonicproblemsinnonconvexpolygonaldomainsMHF2006-5HidefumiKAWASAKI
AdualitytheorybasedontriangularcylindersseparatingthreeconvexsetsinRn¯MHF2006-6RaimundasVIDUNAS
Uniformconvergenceofhypergeometricseries
MHF2006-7YujiKODAMA&Ken-ichiMARUNO
N-SolitonsolutionstotheDKPequationandWeylgroupactions
MHF2006-8ToruKOMATSU
Potentiallygenericpolynomial
MHF2006-9ToruKOMATSU
GenericsexticpolynomialrelatedtothesubfieldproblemofacubicpolynomialMHF2006-10ShuTEZUKA&AnargyrosPAPAGEORGIOU
ExactcubatureforaclassoffunctionsofmaximumeffectivedimensionMHF2006-11ShuTEZUKA
Onhigh-discrepancysequences
¯MHF2006-12RaimundasVIDUNAS
DetectingpersistentregimesintheNorthAtlanticOscillationtimeseriesMHF2006-13ToruKOMATSU
TamelyEisensteinfieldwithprimepowerdiscriminant
MHF2006-14NaliniJOSHI,KenjiKAJIWARA&MartaMAZZOCCO
GeneratingfunctionassociatedwiththeHankeldeterminantformulaforthesolutionsofthePainlev´eIVequation¯MHF2006-15RaimundasVIDUNAS
DarbouxevaluationsofalgebraicGausshypergeometricfunctionsMHF2006-16MasatoKIMURA&IsaoWAKANO
NewmathematicalapproachtotheenergyreleaserateincrackextensionMHF2006-17ToruKOMATSU
ArithmeticofthesplittingfieldofAlexanderpolynomialMHF2006-18HirokiMASUDA
LikelihoodestimationofstableL´evyprocessesfromdiscretedata
¨MHF2006-19HiroshiKAWABI&MichaelROCKNER
Essentialself-adjointnessofDirichletoperatorsonapathspacewithGibbsmeasuresviaanSPDEapproachMHF2006-20MasahisaTABATA
Energystablefiniteelementschemesandtheirapplicationstotwo-fluidflowproblemsMHF2006-21YuzuruINAHAMA&HiroshiKAWABI
AsymptoticexpansionsfortheLaplaceapproximationsforItˆofunctionalsofBrownianroughpathsMHF2006-22YoshiyukiKAGEI
ResolventestimatesforthelinearizedcompressibleNavier-Stokesequationinaninfinitelayer
MHF2006-23YoshiyukiKAGEI
AsymptoticbehaviorofthesemigroupassociatedwiththelinearizedcompressibleNavier-StokesequationinaninfinitelayerMHF2006-24AkihiroMIKODA,ShuichiINOKUCHI,YoshihiroMIZOGUCHI&Mitsuhiko
FUJIO
Thenumberoforbitsofbox-ballsystemsMHF2006-25ToruFUJII&SadanoriKONISHI
Multi-classlogisticdiscriminationviawavelet-basedfunctionalizationandmodelselectioncriteriaMHF2006-26TaroHAMAMOTO,KenjiKAJIWARA&NicholasS.WITTE
Hypergeometricsolutionstotheq-Painlev´eequationoftype(A1+A1)(1)MHF2006-27HiroshiKAWABI&TomohiroMIYOKAWA
TheLittlewood-Paley-SteininequalityfordiffusionprocessesongeneralmetricspacesMHF2006-28HirokiMASUDA
Notesonestimatinginverse-Gaussianandgammasubordinatorsunderhigh-frequencysamplingMHF2006-29SetsuoTANIGUCHI
Theheatsemigroupandkernelassociatedwithcertainnon-commutativeharmonicoscillatorsMHF2006-30SetsuoTANIGUCHI
StochasticanalysisandtheKdVequation
MHF2006-31MasatoKIMURA,HidekiKOMURA,MasayasuMIMURA,HidenoriMIYOSHI,
TakeshiTAKAISHI&DaishinUEYAMA
QuantitativestudyofadaptivemeshFEMwithlocalizationindexofpatternMHF2007-1TaroHAMAMOTO&KenjiKAJIWARA
(1)
Hypergeometricsolutionstotheq-Painlev´eequationoftypeA4
MHF2007-2KoujiHASHIMOTO,KentaKOBAYASHI&MitsuhiroT.NAKAO
VerifiednumericalcomputationofsolutionsforthestationaryNavier-StokesequationinnonconvexpolygonaldomainsMHF2007-3KenjiKAJIWARA,MartaMAZZOCCO&YasuhiroOHTA
AremarkontheHankeldeterminantformulaforsolutionsoftheTodaequationMHF2007-4Jun-ichiSATO&HidefumiKAWASAKI
DiscretefixedpointtheoremsandtheirapplicationtoNashequilibriumMHF2007-5MitsuhiroT.NAKAO&KoujiHASHIMOTO
Constructiveerrorestimatesoffiniteelementapproximationsfornon-coerciveellipticproblemsanditsapplications
MHF2007-6KoujiHASHIMOTO
Apreconditionedmethodforsaddlepointproblems
MHF2007-7ChristopherMALON,SeiichiUCHIDA&MasakazuSUZUKI
MathematicalsymbolrecognitionwithsupportvectormachinesMHF2007-8KentaKOBAYASHI
OntheglobaluniquenessofStokes’waveofextremeform
MHF2007-9KentaKOBAYASHI
Aconstructiveapriorierrorestimationforfiniteelementdiscretizationsinanon-convexdomainusingsingularfunctionsMHF2007-10MyoungnyounKIM,MitsuhiroT.NAKAO,YoshitakaWATANABE&Takaaki
NISHIDA
Anumericalverificationmethodofbifurcatingsolutionsfor3-dimensionalRayleigh-B´enardproblemsMHF2007-11YoshiyukiKAGEI
LargetimebehaviorofsolutionstothecompressibleNavier-StokesequationinaninfinitelayerMHF2007-12TakashiYANAGAWA,SatoshiAOKIandTetsujiOHYAMA
Humanfingerveinimagesarediverseanditspatternsareusefulforpersonalidentification
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- baoaiwan.cn 版权所有 赣ICP备2024042794号-3
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务