精选高中模拟试卷
石屏县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知三个数a1,a1,a5成等比数列,其倒数重新排列后为递增的等比数列{an}的前三 项,则能使不等式a1a2an11a1a21成立的自然数的最大值为( ) anA.9 B.8 C.7 D.5 2. 已知直线l⊥平面α,直线m⊂平面β,有下面四个命题: (1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m, (3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β, 其中正确命题是( )
A.(1)与(2) B.(1)与(3) C.(2)与(4) D.(3)与(4)
3. 设集合AxR|2x2,Bx|x10,则A(ðRB)( ) A.x|1x2 B.x|2x1 C. x|2x1 D. x|2x2 【命题意图】本题主要考查集合的概念与运算,属容易题.
4. 设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是( )
A. B. C.
D.
第 1 页,共 15 页
精选高中模拟试卷
5. 若复数a2﹣1+(a﹣1)i(i为虚数单位)是纯虚数,则实数a=( ) A.±1
B.﹣1 C.0
D.1
6. 如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )
A. B. C. D.
7. 设有直线m、n和平面α、β,下列四个命题中,正确的是( ) A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥β C.若α⊥β,m⊂α,则m⊥β
D.若α⊥β,m⊥β,m⊄α,则m∥α
),则f(2)的值为( )
8. 已知幂函数y=f(x)的图象过点(,A.
B.﹣
C.2
D.﹣2
9. 设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ) A.3πa2 B.6πa2 C.12πa2D.24πa2
10.已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=( ) A.2
B.6
C.4
D.2
11.“a>b,c>0”是“ac>bc”的( ) A.充分不必要条件
B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
12.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )
第 2 页,共 15 页
精选高中模拟试卷
A.甲 B.乙 C.甲乙相等 D.无法确定
二、填空题
13.抛物线y2=﹣8x上到焦点距离等于6的点的坐标是 .
22
14.若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a的取值范围为 . 原点O的长,则PQ的最小值为( ) A.
15.自圆C:(x3)(y4)4外一点P(x,y)引该圆的一条切线,切点为Q,切线的长度等于点P到
1321 B.3 C.4 D. 1010【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.
16.B,C的对边分别为a,b,c,在△ABC中,角A,已知sinAsinB+sinBsinC+cos2B=1.若C=
,则= .
217.已知数列an的首项a1m,其前n项和为Sn,且满足SnSn13n2n,若对nN,anan1 恒成立,则m的取值范围是_______.
【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.
18.在平面直角坐标系中,a(1,1),b(1,2),记(,)M|OMab,其中O为坐标原点,给出结论如下:
①若(1,4)(,),则1;
②对平面任意一点M,都存在,使得M(,); ③若1,则(,)表示一条直线; ④(1,)(,2)(1,5);
⑤若0,0,且2,则(,)表示的一条线段且长度为22. 其中所有正确结论的序号是 .
三、解答题
19.(本题满分15分)
第 3 页,共 15 页
精选高中模拟试卷
2已知抛物线C的方程为y2px(p0),点R(1,2)在抛物线C上.
(1)求抛物线C的方程;
(2)过点Q(1,1)作直线交抛物线C于不同于R的两点A,B,若直线AR,BR分别交直线l:y2x2于
M,N两点,求MN最小时直线AB的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
20.本小题满分12分 设函数f(x)ealnx Ⅰ讨论f(x)的导函数f'(x)零点个数; Ⅱ证明:当a0时,f(x)2aalna
21.设函数f(x)=x3﹣6x+5,x∈R (Ⅰ)求f(x)的单调区间和极值;
x第 4 页,共 15 页
精选高中模拟试卷
(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.
22.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点. (I)求证:EF⊥平面PAD;
(II)求平面EFG与平面ABCD所成锐二面角的大小.
23.(本小题满分10分)选修4-5:不等式选讲 已知函数f(x)|x2||x1|,g(x)x. (1)解不等式f(x)g(x);
(2)对任意的实数,不等式f(x)2x2g(x)m(mR)恒成立,求实数m的最小值.111]
第 5 页,共 15 页
精选高中模拟试卷
24.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1) (1)求点C到直线AB的距离; (2)求AB边的高所在直线的方程.
第 6 页,共 15 页
精选高中模拟试卷
石屏县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参) 一、选择题
1. 【答案】C 【解析】
试题分析:因为三个数a1,a1,a5等比数列,所以a1a1a5,a3,倒数重新排列后恰
2
好为递增的等比数列{an}的前三项,为,,11111,公比为,数列是以为首项,为公比的等比数列,则
8422an不等式a1a2an11a1a211n811212n8等价为,整理,得1an12122n27,1n7,nN,故选C. 1
考点:1、等比数列的性质;2、等比数列前项和公式. 2. 【答案】B
【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确; ∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;
∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;
∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B.
【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.
3. 【答案】B
【解析】易知Bx|x10x|x1,所以A(ðRB)x|2x1,故选B.
4. 【答案】D
【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减
结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C
当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B 故选D
第 7 页,共 15 页
精选高中模拟试卷
【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题
5. 【答案】B
2
【解析】解:因为复数a﹣1+(a﹣1)i(i为虚数单位)是纯虚数,
2
所以a﹣1=0且a﹣1≠0,解得a=﹣1.
故选B.
【点评】本题考查复数的基本概念的应用,实部为0并且虚部不为0,是解题的关键.
6. 【答案】A
【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆, 则这个椭圆的短半轴为:R,长半轴为:
222
∵a=b+c,∴c=
=,
,
∴椭圆的离心率为:e==. 故选:A.
【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.
7. 【答案】D
【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;
C不对,由面面垂直的性质定理知,m必须垂直交线; 故选:D.
8. 【答案】A
【解析】解:设幂函数y=f(x)=x,把点(,
α
)代入可得=
α
,
∴α=,即f(x)=故f(2)=
=
,
,
故选:A.
9. 【答案】B
【解析】解:根据题意球的半径R满足
22
(2R)=6a,
第 8 页,共 15 页
精选高中模拟试卷
22
所以S球=4πR=6πa.
故选B
10.【答案】B
2222
【解析】解:∵圆C:x+y﹣4x﹣2y+1=0,即(x﹣2)+(y﹣1)=4,
表示以C(2,1)为圆心、半径等于2的圆.
由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1), 故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1). ∵AC=
∴切线的长|AB|=故选:B.
【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.
11.【答案】A
【解析】解:由“a>b,c>0”能推出“ac>bc”,是充分条件,
由“ac>bc”推不出“a>b,c>0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac>bc,但是a<b,c<0, 故选:A.
【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题
12.【答案】A
【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定, 而乙地的数据分布比较分散,不如甲地数据集中, ∴甲地的方差较小. 故选:A.
【点评】本题 考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础.
=
=2=6.
,CB=R=2,
二、填空题
13.【答案】 (﹣4,
) .
2
【解析】解:∵抛物线方程为y=﹣8x,可得2p=8, =2.
∴抛物线的焦点为F(﹣2,0),准线为x=2. 设抛物线上点P(m,n)到焦点F的距离等于6,
第 9 页,共 15 页
精选高中模拟试卷
根据抛物线的定义,得点P到F的距离等于P到准线的距离, 即|PF|=﹣m+2=6,解得m=﹣4,
2
∴n=8m=32,可得n=±4
).
, ).
因此,点P的坐标为(﹣4,故答案为:(﹣4,
【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与 标准方程等知识,属于基础题.
14.【答案】 a≤﹣1 .
2
【解析】解:由x﹣2x﹣3≥0得x≥3或x≤﹣1,
2
若“x<a”是“x﹣2x﹣3≥0”的充分不必要条件,
则a≤﹣1, 故答案为:a≤﹣1.
【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.
15.【答案】D 【
解
析
】
16.【答案】=
.
【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c, ∵已知sinAsinB+sinBsinC+cos2B=1,
2
∴sinAsinB+sinBsinC=2sinB.
2
再由正弦定理可得 ab+bc=2b,即 a+c=2b,故a,b,c成等差数列.
C=,由a,b,c成等差数列可得c=2b﹣a,
22222
由余弦定理可得 (2b﹣a)=a+b﹣2abcosC=a+b+ab.
第 10 页,共 15 页
精选高中模拟试卷
2
化简可得 5ab=3b,∴ =.
故答案为:.
【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.
17.【答案】(,)
1543
18.【答案】②③④
【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.
12由ab(1,4)得,∴,①错误;
124a与b不共线,由平面向量基本定理可得,②正确;
记aOA,由OMab得AMb,∴点M在过A点与b平行的直线上,③正确; 由aba2b得,(1)a(2)b0,∵a与b不共线,∴∴④正确;
1
,∴aba2b(1,5),2
21xyx33,∴2xy0且x2y60,∴(,)表示的一
设M(x,y),则有,∴11xy0y2xy33条线段且线段的两个端点分别为(2,4)、(2,2),其长度为25,∴⑤错误. 三、解答题
219.【答案】(1)y4x;(2)xy20.
2【解析】(1)∵点R(1,2)在抛物线C上,22p1p2,…………2分 2即抛物线C的方程为y4x;…………5分
第 11 页,共 15 页
精选高中模拟试卷
第 12 页,共 15 页
精选高中模拟试卷
20.【答案】
【解析】:Ⅰf'(x)exa,因为定义域为(0,), xaxxx有解 即xea有解. 令h(x)xe,h'(x)e(x1), x当x0,h'(x)0,h(0)0h(x)0 f'(x)0ex所以,当a0时,f'(x)0,无零点; 当a0时,有唯一零点. Ⅱ由Ⅰ可知,当a0时,设f'(x)在(0,)上唯一零点为x0, 当x(x0,),f'(x)0,f(x)在(x0,)为增函数;
aex0x0a x0aaaaf(x0)ex0alnx0alnx0a(lnax0)ax0alna2aalna
x0ex0x0当x(0,x0),f'(x)0,f(x)在(0,x0)为减函数.
ex021.【答案】
【解析】解:(Ⅰ)
第 13 页,共 15 页
精选高中模拟试卷
∴当
∴f(x)的单调递增区间是当∴当
;当
,单调递减区间是
,
(Ⅱ)由(Ⅰ)的分析可知y=f(x)图象的大致形状及走向,
的图象有3个不同交点,
即方程f(x)=α有三解.
22.【答案】
【解析】解:(I)证明:∵平面PAD⊥平面ABCD,AB⊥AD, ∴AB⊥平面PAD, ∵E、F为PA、PB的中点, ∴EF∥AB,
∴EF⊥平面PAD; (II)解:过P作AD的垂线,垂足为O, ∵平面PAD⊥平面ABCD,则PO⊥平面ABCD. 取AO中点M,连OG,EO,EM, ∵EF∥AB∥OG,
∴OG即为面EFG与面ABCD的交线
又EM∥OP,则EM⊥平面ABCD.且OG⊥AO, 故OG⊥EO
∴∠EOM 即为所求 在RT△EOM中,EM=∴tan∠EOM=
OM=1
,故∠EOM=60°
∴平面EFG与平面ABCD所成锐二面角的大小是60°.
第 14 页,共 15 页
精选高中模拟试卷
【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.
23.【答案】(1){x|3x1或x3};(2). 【
解
析
】
试
题解析:(1)由题意不等式f(x)g(x)可化为|x2|x|x1|, 当x1时,(x2)x(x1),解得x3,即3x1; 当1x2时,(x2)xx1,解得x1,即1x1; 当x2时,x2xx1,解得x3,即x3 (4分) 综上所述,不等式f(x)g(x)的解集为{x|3x1或x3}. (5分)
(2)由不等式f(x)2x2g(x)m可得|x2||x1|m, 分离参数m,得m|x2||x1|,∴m(|x2||x1|)max
∵|x2||x1||x2(x1)|3,∴m3,故实数m的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1 24.【答案】 【解析】解(1)∵
∴根据直线的斜截式方程,直线AB:
,
,化成一般式为:4x﹣3y+12=0,
; ,
∴根据点到直线的距离公式,点C到直线AB的距离为
(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为由直线的点斜式方程为:
∴AB边的高所在直线的方程为3x+4y﹣7=0.
,化成一般式方程为:3x+4y﹣7=0,
第 15 页,共 15 页