您好,欢迎来到保捱科技网。
搜索
您的当前位置:首页《信息论与编码》课后习题答案

《信息论与编码》课后习题答案

来源:保捱科技网
信息论与编码常识题

1、 在认识论层次上研究信息的时候,必须同时考虑到 形式、含义和效用 三个方面的因素。

2、 1948年,美国数学家 香农 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

3、 按照信息的性质,可以把信息分成 语法信息、语义信息和语用信息 。

4、 按照信息的地位,可以把信息分成 客观信息和主观信息 。

5、 人们研究信息论的目的是为了 高效、可靠、安全 地交换和利用各种各样的信息。

6、 信息的 可度量性 是建立信息论的基础。

7、 统计度量 是信息度量最常用的方法。

8、 熵 是香农信息论最基本最重要的概念。

9、 事物的不确定度是用时间统计发生 概率的对数 来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用 随机矢量 描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。

1 / 17

信息论与编码常识题

12、自信息量的单位一般有 比特、奈特和哈特 。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是 ∞ 。

15、两个相互的随机变量的联合自信息量等于 两个自信息量之和 。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。

17、离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的 N倍 。

limH(XN/X1X2XN1)HN18、离散平稳有记忆信源的极限熵,。

19、对于n元m阶马尔可夫信源,其状态空间共有 nm 个不同的状态。

20、一维连续随即变量X在[a,b]区间内均匀分布时,其信源熵为 log2(b-a) 。

1log22eP221、平均功率为P的高斯分布的连续信源,其信源熵,Hc(X)=。

22、对于限峰值功率的N维连续信源,当概率密度 均匀分布 时连续信源熵具有最大值。

23、对于限平均功率的一维连续信源,当概率密度 高斯分布 时,信源熵有最大值。

2 / 17

信息论与编码常识题

24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值P和信源的熵功率P 之比 。

25、若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为 3 。

26、m元长度为ki,i=1,2,·n的异前置码存在的充要条件是:i1mnki1。

27、若把掷骰子的结果作为一离散信源,则其信源熵为 log26 。

28、同时掷两个正常的骰子,各面呈现的概率都为1/6,则“3和5同时出现”这件事的自信息量是 log218(1+2 log23)。

1mp(x)em29、若一维随即变量X的取值区间是[0,∞],其概率密度函数为,其中:x0,

xm是X的数学期望,则X的信源熵HC(X)log2me。

30、一副充分洗乱的扑克牌(52张),从中任意抽取1张,然后放回,若把这一过程看作离散无记忆信源,则其信源熵为 log252 。

31、根据输入输出信号的特点,可将信道分成离散信道、连续信道、半离散或半连续 信道。

32、信道的输出仅与信道当前输入有关,而与过去输入无关的信道称为 无记忆 信道。

3 / 17

信息论与编码常识题

33、具有一一对应关系的无噪信道的信道容量C= log2n 。

34、强对称信道的信道容量C= log2n-Hni 。

35、对称信道的信道容量C= log2m-Hmi 。

36、对于离散无记忆信道和信源的N次扩展,其信道容量CN= NC 。

37、对于N个对立并联信道,其信道容量 CN =

Ck1Nk 。

38、多用户信道的信道容量用 空间的一个区域的界限 来表示。

39、多用户信道可以分成几种最基本的类型: 多址接入信道、广播信道 和相关信源信道。

40、广播信道是只有 一个输入端和多个输出端 的信道。

41、当信道的噪声对输入的干扰作用表现为噪声和输入的线性叠加时,此信道称为 加性连续信道 。

42、高斯加性信道的信道容量C=

P1log2(1X)2PN。

43、信道编码定理是一个理想编码的存在性定理,即:信道无失真传递信息的条件是 信息率小于信道容量 。

4 / 17

信息论与编码常识题

1/21/20001代表的信道的信道容量C= 1 。 44、信道矩阵

101001代表的信道的信道容量C= 1 。 45、信道矩阵46、高斯加性噪声信道中,信道带宽3kHz,信噪比为7,则该信道的最大信息传输速率Ct= 9 kHz 。

47、对于具有归并性能的无燥信道,达到信道容量的条件是 p(yj)=1/m) 。

1001代表的信道,若每分钟可以传递6*105个符号,则该信道的最大信息传48、信道矩阵输速率Ct= 10kHz 。

49、信息率失真理论是量化、数模转换、频带压缩和 数据压缩 的理论基础。

50、求解率失真函数的问题,即:在给定失真度的情况下,求信息率的 极小值 。

51、信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就 越大 ,获得的信息量就越小。

52、信源的消息通过信道传输后的误差或失真越大道传输消息所需的信息率 也越小 。

53、单符号的失真度或失真函数d(xi,yj)表示信源发出一个符号xi,信宿再现yj所引起

5 / 17

信息论与编码常识题

的 误差或失真 。

0ij54、汉明失真函数 d(xi,yj)=1ij 。

55、平方误差失真函数d(xi,yj)=(yj- xi)2。

56、平均失真度定义为失真函数的数学期望,即d(xi,yj)在X和Y的 联合概率空间P(XY)中 的统计平均值。

57、如果信源和失真度一定,则平均失真度是 信道统计特性 的函数。

58、如果规定平均失真度D不能超过某一限定的值D,即:DD。我们把DD称为 保真度准则 。

59、离散无记忆N次扩展信源通过离散无记忆N次扩展信道的平均失真度是单符号信源通过单符号信道的平均失真度的 N 倍。

60、试验信道的集合用PD来表示,则PD=

p(yj/xi):DD;i1,2,,n,j1,2,,m 。

61、信息率失真函数,简称为率失真函数,即:试验信道中的平均互信息量的 最小值 。

62、平均失真度的下限取0的条件是失真矩阵的 每一行至少有一个零元素 。

63、平均失真度的上限Dmax取{Dj:j=1,2,,m}中的 最小值 。 ·

6 / 17

信息论与编码常识题

、率失真函数对允许的平均失真度是 单调递减和连续的 。

65、对于离散无记忆信源的率失真函数的最大值是 log2n 。

66、当失真度大于平均失真度的上限时Dmax时,率失真函数R(D)= 0 。

Inf67、连续信源X的率失真函数R(D)= p(y/x)PDI(X;Y) 。

12log22R(D)D 。 68、当D时,高斯信源在均方差失真度下的信息率失真函数为 269、保真度准则下的信源编码定理的条件是 信源的信息率R大于率失真函数R(D) 。

1X00aP(X)1/21/2a0,则该信源的Dmax= a/2 。 70、某二元信源其失真矩阵D=1X00aP(X)1/21/2a0其失真矩阵D=,则该信源的Dmin= 0 。 71、某二元信源1X0P(X)1/21/2其失真矩阵D=72、某二元信源0aa0,则该信源的R(D)= 1-H

(D/a) 。

73、按照不同的编码目的,编码可以分为三类:分别是 信源编码、信道编码和安全编码 。

7 / 17

信息论与编码常识题

74、信源编码的目的是: 提高通信的有效性 。

75、一般情况下,信源编码可以分为 离散信源编码、连续信源编码和相关信源编码 。

76、连续信源或模拟信号的信源编码的理论基础是 限失真信源编码定理 。

77、在香农编码中,第i个码字的长度ki和p(xi)之间有 log2p(xi)ki1log2p(xi) 关系。

x2x3x4x5x6x7x8Xx1P(X)1/41/41/81/81/161/161/161/16进行二进制费诺编码,78、对信源其编码

效率为 1 。

79、对具有8个消息的单符号离散无记忆信源进行4进制哈夫曼编码时,为使平均码长最短,应增加 2 个概率为0的消息。

80、对于香农编码、费诺编码和哈夫曼编码,编码方法惟一的是 香农编码 。

81、对于二元序列0011100000011111001111000001111111,其相应的游程序列是 23652457 。

82、设无记忆二元序列中,“0”和“1”的概率分别是p0和p1,则“0”游程长度L(0)的概率为 p[L(0)]p0L(0)1p1 。

83、游程序列的熵 等于 原二元序列的熵。

8 / 17

信息论与编码常识题

84、若“0”游程的哈夫吗编码效率为η0,“1”游程的哈夫吗编码效率为η1,且η0>η1对应的二元序列的编码效率为η,则三者的关系是 η0>η>η1 。

85、在实际的游程编码过程中,对长码一般采取 截断 处理的方法。

86、“0”游程和“1”游程可以分别进行哈夫曼编码,两个码表中的码字可以重复,但 C码 必须不同。

87、在多符号的消息序列中,大量的重复出现的,只起占时作用的符号称为 冗余位 。

88、“冗余变换”即:将一个冗余序列转换成一个二元序列和一个 缩短了的多元序列 。

、L-D编码是一种 分帧传送冗余位序列 的方法。

90、L-D编码适合于冗余位 较多或较少 的情况。

91、信道编码的最终目的是 提高信号传输的可靠性 。

92、狭义的信道编码即:检、纠错编码 。

93、BSC信道即:无记忆二进制对称信道 。

94、n位重复码的编码效率是 1/n 。

95、等重码可以检验 全部的奇数位错和部分的偶数位错 。

9 / 17

信息论与编码常识题

96、任意两个码字之间的最小汉明距离有称为码的最小距dmin,则dmin=

mind(c,c')cc'。

dmin197、若纠错码的最小距离为dmin,则可以纠正任意小于等于t= 2个差错。

98、若检错码的最小距离为dmin,则可以检测出任意小于等于l= dmin-1 个差错。

99、线性分组码是同时具有 分组特性和线性特性 的纠错码。

100、循环码即是采用 循环移位特性界定 的一类线性分组码。

三、判断(每题1分)(50道)

1、 必然事件和不可能事件的自信息量都是0 。错

2、 自信息量是p(xi)的单调递减函数。对

3、 单符号离散信源的自信息和信源熵都具有非负性。对

4、 单符号离散信源的自信息和信源熵都是一个确定值。错

5、 单符号离散信源的联合自信息量和条件自信息量都是非负的和单调递减的。对

6、 自信息量、条件自信息量和联合自信息量之间有如下关系:

10 / 17

信息论与编码常识题

I(xiyj)I(xi)I(yj/xi)I(yj)I(xi/yj) 对

7、 自信息量、条件自信息量和互信息量之间有如下关系:

I(xi;yj)I(xi)I(xi/yj)I(yj)I(yj/xi) 对

8、 当随即变量X和Y相互时,条件熵等于信源熵。对

9、 当随即变量X和Y相互时,I(X;Y)=H(X) 。错

10、信源熵具有严格的下凸性。错

11、平均互信息量I(X;Y)对于信源概率分布p(xi)和条件概率分布p(yj/xi)都具有凸函数性。 对

12、m阶马尔可夫信源和消息长度为m的有记忆信源,其所含符号的依赖关系相同。 错

13、利用状态极限概率和状态一步转移概率来求m阶马尔可夫信源的极限熵。 对

14、N维统计均匀分布连续信源的熵是N维区域体积的对数。 对

15、一维高斯分布的连续信源,其信源熵只与其均值和方差有关。 错

16、连续信源和离散信源的熵都具有非负性。 错

11 / 17

信息论与编码常识题

17、连续信源和离散信源都具有可加性。 对

18、连续信源和离散信源的平均互信息都具有非负性。 对

19、定长编码的效率一般小于不定长编码的效率。 对

20、若对一离散信源(熵为H(X))进行二进制无失真编码,设定长码子长度为K,变长码子平均长度为K,一般K>K。 错

21、信道容量C是I(X;Y)关于p(xi)的条件极大值。 对

22、离散无噪信道的信道容量等于log2n,其中n是信源X的消息个数。 错

1m时,可达到信道容量C。错

23、对于准对称信道,当

p(yj)24、多用户信道的信道容量不能用一个数来代表。 对

25、多用户信道的信道容量不能用一个数来代表,但信道的信息率可以用一个数来表示。错

26、高斯加性信道的信道容量只与信道的信噪有关。 对

27、信道无失真传递信息的条件是信息率小于信道容量。对

28、最大信息传输速率,即:选择某一信源的概率分布(p(xi)),使信道所能传送的信息

12 / 17

信息论与编码常识题

率的最大值。 错

29、对于具有归并性能的无燥信道,当信源等概率分布时(p(xi)=1/n),达到信道容量。 错

30、求解率失真函数的问题,即:在给定失真度的情况下,求信息率的极小值。对

31、信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就越小,获得的信息量就越小。 错

32、当p(xi)、p(yj/xi)和d(xi,yj)给定后,平均失真度是一个随即变量。 错

33、率失真函数对允许的平均失真度具有上凸性。对

34、率失真函数没有最大值。 错

35、率失真函数的最小值是0 。对

36、率失真函数的值与信源的输入概率无关。错

37、信源编码是提高通信有效性为目的的编码。 对

38、信源编码通常是通过压缩信源的冗余度来实现的。 对

39、离散信源或数字信号的信源编码的理论基础是限失真信源编码定理。 错

13 / 17

信息论与编码常识题

40、一般情况下,哈夫曼编码的效率大于香农编码和费诺编码。 对

41、在编m(m>2)进制的哈夫曼码时,要考虑是否需要增加概率为0的码字,以使平均码长最短。 对

42、游程序列的熵(“0”游程序列的熵与“1”游程序列的熵的和)大于等于原二元序列的熵。 错

43、在游程编码过程中,“0”游程和“1”游程应分别编码,因此,它们的码字不能重复。 错

44、L-D编码适合于冗余位较多和较少的情况,否则,不但不能压缩码率,反而使其扩张。 对

45、狭义的信道编码既是指:信道的检、纠错编码。 对

46、对于BSC信道,信道编码应当是一对一的编码,因此,消息m的长度等于码字c的长度。 错

47、等重码和奇(偶)校验码都可以检出全部的奇数位错。 对

48、汉明码是一种线性分组码。对

49、循环码也是一种线性分组码。 对

14 / 17

信息论与编码常识题

50、卷积码是一种特殊的线性分组码。 错

1. 在无失真的信源中,信源输出由 H(X) 来度量;在有失真的信源中,信源输出由

R(D) 来度量。

2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码,

然后_____加密____编码,再______信道_____编码,最后送入信道。

3. 带限AWGN波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是CWlog(1SNR);当归一化信道容量C/W趋近于零时,也即信道完全丧失了通信能力,此时Eb/N0为 -1.6 dB,我们将它称作香农限,是一切编码方式所能达到的理论极限。

4. 保密系统的密钥量越小,密钥熵H(K)就越 小 ,其密文中含有的关于明文的信息量I(M;

C)就越 大 。

42g(x)xxx1,则信息位长度k为 3 ,校验多项式 5. 已知n=7的循环码

3h(x)= xx1 。

6. 设输入符号表为X={0,1},输出符号表为Y={0,1}。输入信号的概率分布为p=(1/2,1/2),失真函数为d(0,0) = d(1,1) = 0,d(0,1) =2,d(1,0) = 1,则Dmin= 0 ,R(Dmin)

1001= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x)]=;Dmax= 0.5 ,R(Dmax)= 0 ,

15 / 17

信息论与编码常识题

1010相应的编码器转移概率矩阵[p(y/x)]=。

7. 已知用户A的RSA公开密钥(e,n)=(3,55),p5,q11,则(n) 40 ,他的秘密密钥(d,n)=(27,55) 。若用户B向用户A发送m=2的加密消息,则该加密后的消息为 8 。

8. 可以用克劳夫特不等式作为唯一可译码存在的判据。 ( )

9. 线性码一定包含全零码。 ( )

10. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的

编码,是以另外一种形式实现的最佳统计匹配编码。 (×)

11. 某一信源,不管它是否输出符号,只要这些符号具有某些概率特性,就有信息量。

(×)

12. 离散平稳有记忆信源符号序列的平均符号熵随着序列长度L的增大而增大。 (×)

13. 限平均功率最大熵定理指出对于相关矩阵一定的随机矢量X,当它是正态分布时具

有最大熵。 ( )

14. 循环码的码集中的任何一个码字的循环移位仍是码字。 ( )

16 / 17

信息论与编码常识题

15. 信道容量是信道中能够传输的最小信息量。 (×)

16. 香农信源编码方法在进行编码时不需要预先计算每个码字的长度。 (×)

17. 在已知收码R的条件下找出可能性最大的发码Ci作为译码估计值,这种译码方法叫做最佳译码。( )

17 / 17

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baoaiwan.cn 版权所有 赣ICP备2024042794号-3

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务