您好,欢迎来到保捱科技网。
搜索
您的当前位置:首页The Opacity of Spiral Galaxy Disks VIII Structure of the Cold ISM

The Opacity of Spiral Galaxy Disks VIII Structure of the Cold ISM

来源:保捱科技网
7002 lJu 72 ]hp-ortsa[ 1v5614.707:0viXraSecondSubmissiontoAJ

TheOpacityofSpiralGalaxyDisksVIII:

StructureoftheColdISM

B.W.Holwerda1,B.Draine2,K.D.Gordon3,R.A.Gonz´alez4,D.Calzetti5,M.Thornley

6

,B.Buckalew7,RonaldJ.Allen1andP.C.vanderKruit8

holwerda@stsci.eduABSTRACT

Thequantityofdustinaspiraldiskcanbeestimatedusingthedust’stypicalemissionortheextinctionofaknownsource.Inthispaper,wecomparetwotechniques,onebasedonemissionandoneonabsorption,appliedonsectionsoffourteendiskgalaxies.Thetwomeasurementsreflect,respectivelytheaverageandapparentopticaldepthofadisksection.Hence,theydependdifferentlyontheaveragenumberandopticaldepthofISMstructuresinthedisk.

ThesmallscalegeometryofthecoldISMiscriticalforaccuratemodelsoftheoverallenergybudgetofspiraldisks.ISMgeometry,relativecontributionsofdifferentstellarpopulationsanddustemissivityareallfreeparametersingalaxySpectralEnergyDistribution(SED)models;theyarealsosometimesdegenerate,dependingonwavelengthcoverage.OuraimistoconstraintypicalISMgeometry.TheapparentopticaldepthmeasurementcomesfromthenumberofdistantgalaxiesseeninHSTimagesthroughtheforegrounddisk,calibratedwiththe

–2–

“SyntheticFieldMethod”(SFM).WediscusswhatcanbelearnedfromtheSFMmeasurementaloneregardingISMgeometry.

WemeasuretheIRfluxinimagesfromtheSpitzerInfraredNearbyGalaxySurveyinthesamesectionofthediskthatwascoveredbyHST.AphysicalmodelofthedustisfittotheSEDtoestimatethedustsurfacedensity,meantemper-ature,andbrightnessinthesedisksections.Thesurfacedensityissubsequentlyconvertedintotheaverageopticaldepthestimate.

ThetwomeasurementsgenerallyagreeandtheSEDinordermodelfindsamostlycolddust(T<25K.).Theratiosbetweenthemeasuredaverageandapparentopticaldepthsofthedisksectionsimplyopticallythin(τc=0.4)cloudsinthesedisks.Opticallythickdisks,arelikelytohavemorethanasinglecloudalongtheline-of-sight.

Subjectheadings:(ISM:)dust,extinction,ISM:structure,galaxies:ISM,galax-ies:spiral,infrared:galaxies,infrared:ISM

1.Introduction

Thedustcontentofaspiralgalaxydiskcanbemappedeitherbythecharacteristicdustemissioninthefar-infrared(FIR)andsub-mmregimes,orbyusingtheattenuationofknownbackgroundsources.Bothtechniqueshaveseenrecentsignificantimprovementsinaccuracyandsensitivity,withcomplementaryresultssheddinglightonthedustyinterstellarmediuminspiraldisks.

Theemissionfromtheinterstellardustinthedisksofspiralgalaxieshasbeencharac-terizedwithincreasingaccuracybyseveralinfraredspacemissions(IRAS,ISOand,recently,Spitzer),aswellasthesub-mmobservationsofSCUBAontheJCMT.Theimprovementsinspatialresolutionandwavelengthcoveragehaveledtosignificantinsightintothetem-peraturecomponentsofthedustinspiraldisks,andintotherelationbetweendustycloudsandstar-formation.TheFIRemissionfromspiralgalaxieshasrevealedthatthedustcanbedescribedbytwodominantthermalcomponents:warm(25KFIRandsub-mmobservationsofgalaxiesfindindications(e.g.,Trewhellaetal.2000;Altonetal.1998)ordirectevidenceofcolddustdisksextendingbeyondthestellardisk

–3–

(Nelsonetal.1998;Daviesetal.1999;Popescu&Tuffs2003).Thestudiesofedge-onspi-ralsbyRadovichetal.(2001)andXilourisetal.(1999)quantifiedtheradialprofileasascalelengthofthedustthatis40%largerthanthatofthestarlight.ThecontributionofthecoldISM(T<25K)totheoverallemissionofspiraldiskshasbeendifficulttoconstrainbe-causeofthedegeneracybetweendusttemperatureandmass.Hence,thecoldISM’srelationwithHIandtheirrelativedistributionremainunknown.

Spitzerobservations,mostlyfromtheSpitzerInfraredNearbyGalaxySurvey(SINGS,Kennicuttetal.2003),havealreadycontributedgreatlytotheunderstandingofspiraldisks.Therelationsbetweenthetracersofcolddust(70and160micronemission)andstar-formation,bothobscured(24micron)andunobscured(UVandHαemission)havealreadybeenstudiedwiththismulti-wavelengthsurveyinseveralcanonicalgalaxiesandtheirsubstructure:thestarburstM51(Calzettietal.2005;Thornleyetal.2006),thegranddesignspiralM81(Gordonetal.2004;P´erez-Gonz´alezetal.2006),theringsofNGC7331(Reganetal.2004)andM31(Gordonetal.2006),thesuperwindinM82(Engelbrachtetal.2006),andthedwarfNGC55(Engelbrachtetal.2004).Daleetal.(2005,2007)discusstheSEDofallSINGSgalaxiesoverallavailablewavelengths.Draineetal.(2007)findampleev-idencefordustinalltheSINGSgalaxies,withthegas-to-dustratiorelatedtothemetallicity.Theyfindnoevidenceforverycold(T<10K)dust,however.

Thesestudiesfindampleevidenceofcolddustthroughouttheopticaldisksofspi-ralsbut,interestingly,alsooutsidetheminvariousplaces:ontheedgeoftheopticaldisk(Thornleyetal.2006;Gordonetal.2006),outsideM82’ssuperwind(Engelbrachtetal.2006)andextendingbeyondthestellardisk(Hinzetal.2006).

Paralleltotheseinvestigationsofdustemissionhasgoneanobservationalefforttoquan-tifytheabsorptionbydustinspiraldisksusingknownbackgroundsources.White&Keel(1992)proposedusingoccultinggalaxypairsforthispurpose.Nearbyoccultinggalaxypairswereinitiallyinvestigatedwithground-baseddata,bothimages(Andredakis&vanderKruit1992;Berlindetal.1997;Domingueetal.1999;Whiteetal.2000)andspectra(Domingueetal.2000).Subsequently,withtheHubbleSpaceTelescope(HST),amoredetailedpictureofdustinthesenearbydisksemerged(Keel&White2001a,b;Elmegreenetal.2001).Theresultsofthesestudiesarethatextinctionisgray1whenmeasuredoverdisksectionsgreaterthan100pc,butresemblestheGalacticextinctionlawatsmallerscales–thosethatcanonlyberesolvedwithHST.Armsarefoundtobemoreopaquethanthegeneraldisk,and

–4–

someevidencesuggeststhatthedustdiskisafractal,similartotheHIdisk.

Gonz´alezetal.(1998)investigatedtheuseofthecalibratednumberofdistantgalaxiesseenthoughtheforegrounddiskinHSTimages.Thecalibratedcountsofdistantgalaxieshavebeenexploredfurtherinthepreviouspapersinthisseries(Gonz´alezetal.1998,2003;Holwerdaetal.2005a,b,c,d,e,2006).Boththeoccultinggalaxytechniqueandcountsofdistantobjectsyieldverysimilaropacitiesfordisksandspiralarms(Holwerdaetal.2005b).Inrecentyears,modelshavebeendevelopedtoexplaintheSpectralEnergyDistri-bution(SED)ofedge-onspiralsspanningwavelengthsrangingfromtheUVtotheFIR.(e.g.,Popescuetal.2000;Misiriotisetal.2001;Popescuetal.2000;Misiriotisetal.2001;Tuffsetal.2004;Boissieretal.2004;Dasyraetal.2005;Tuffsetal.2004;Dasyraetal.2005;Calzettietal.2005;Dopitaetal.2006b,a;Draine&Li2007;Draineetal.2007).Threescenarioshavebeenproposedtoexplainthediscrepancybetweentheapparentab-sorptioninUVandopticalwavelengthsandtheemissionofdustintheFIRandsub-mmregimes:

1.Ayoungstellarpopulationisembeddedinthedenseplaneofthedisk.ThisisproposedbyPopescuetal.(2000)andcorroboratedbyDriveretal.(2007).TheembeddedyoungstarspumptheFIRemissionradiatedbythedustplane.2.Astronglyclumpeddustymedium.Theclumpingwouldleadtounderestimatethedustmassfromopticalextinctioninedge-onsystems(Bianchietal.2000b;Witt&Gordon2000;Misiriotis&Bianchi2002);thedustmasswouldalsobeunderestimatedbyaUVtoFIRSED(Bianchietal.2000a).3.Adifferentemissivityofthecolddustgrains–higherthancanonical–intheFIRandsub-mm.AchangeofemissivityhasbeenproposedfordenserISMregions(Altonetal.2004;Dasyraetal.2005)or,alternatively,forthelowerdensityregionsofthedisk(Bendoetal.2006).Inallthreeofthesescenarios,theclumpinessofthedustyISMisanimportantfactor.WhileinsomemodelsthelargescalestructureofthedustyISMhasbeensomewhatconstrained(e.g.,Xilourisetal.1999;Sethetal.2005;Bianchi2007;Kamphuisetal.2007),thesmall-scalegeometry(“clumpiness”)ofthecoldISMremainsunknown.Therefore,anestimateoftheprevalentdustycloudsizeforspiraldiskswouldprovideaconstraintfortheSEDmodelsofspiraldisks.

GiventhatSEDandextinctiontechniquesaresensitivetodifferentcharacteristicsofthedustycloudsinthespiraldisk,acomparisonbetweentheopticaldepthderivedfrom

–5–

thesetwomethodshasthepotentialtofigureoutthestructureofthedustyISM.Here,wecomparetheI-bandopticaldepthsforasectionofthespiraldisk,onederivedfromaSEDmodeloftheSpitzerfluxes(“average”),andonedeterminedfromthenumberofdistantgalaxiesfoundinanHSTimage(“apparent”).Theterm“average”referstowhattheopticaldepthproportionaltothedustmass,uniformlydistributedoverthedisksection.Theterm“apparent”meanstheeffectiveopticaldepthofthedisksectionforabackgrounduniformlightsource(originaldefinitionsfromNatta&Panagia1984).Theterm“opacity”isusedthroughoutourpreviouspapersfortheapparentopticaldepthmeasuredoverasectionofthediskforitswholeheight.

Thispaperisstructuredasfollows:§2discussestheSpitzerandHSTdataused.In§3,thetwodifferentmethodstoderiveopticaldepthsarepresented.Wediscusstherelationbetweendustgeometryandgalaxycountsin§4.In§5,wepresentthederivedopticaldepths;§6presentsasimplegeometricmodeltointerprettheresults,and§7listsourconclusionsandfuturework.

2.Data

Thedataforthispapercomefromtwoarchives,theHSTarchiveandthefourthdatarelease(SINGSteam2006)oftheSpitzerInfraredNearbyGalaxySurvey(SINGS,Kennicuttetal.2003)2.ThereisanoverlapoffourteengalaxiesbetweentheSINGSsampleandthatofHolwerdaetal.(2005b).Twoofthese,NGC3621andNGC5194,havetwoWFPC2exposuresanalyzedinHolwerdaetal.(2005b).TheHST/WFPC2datareductionisdescribedinHolwerdaetal.(2005a).ThereasoningbehindtheHSTsampleselectionfromthearchiveisexplainedin§3.1.

TheoverlapbetweenHSTandSpitzerdataisillustratedinFigure1,withtheWFPC2footprintprojectedonthe24micronSpitzerimages.OnlythesolidanglecoveredbytheWFchipsisusedforfurtheranalysis(thePCchipisexcluded).

TheInfraredArrayCamera(IRAC)mosaicismadewiththecustomSINGSditherscript,byM.Regan,thatcombinesthescanimagesintoasinglemosaicusingthe“drizzle”algo-rithm(FourthDataReleaseNotes,SINGSteam2006).TheMultibandImagingPhotometerforSpitzer(MIPS)dataproductsarecalibrated,sky–subtractedmosaicsinallthreebands,reducedasdescribedinGordonetal.(2005);Bendoetal.(2006);SINGSteam(2006).Thebasicinstrumentparameters,pixelscale,andadoptedPSFFWHMforthesevenmainSpitzer

–6–

imagingmodesaresummarizedinTable1.

3.Analysis

Twoparallelestimatesoftheopticaldepthofdisksareusedinthispaper:first,theapparentopticaldepthofthespiraldisksisdeterminedfromthenumberofdistantgalaxiesidentifiedintheHST/WFPC2images,calibratedwiththe“SyntheticFieldMethod”(SFM).Secondly,theopticaldepthofthesamesectionofthespiraldisksisderivedfromthedustsurfacedensity,whichisaresultoftheSEDmodelfittotheSpitzerfluxesusingthemodelfromDraine&Li(2007).

3.1.Galaxycounts:“SyntheticFieldMethod”

Inprinciple,thenumberofdistantgalaxiesseenthroughaspiraldiskisafunctionofthedustextinction,aswellasthecrowdingandconfusionbytheforegrounddisk.InitialapplicationsofthenumberofdistantgalaxiesasanextinctiontracerwereontheMagellanicClouds(Shapley1951;Wesselink1961;Hodge1974;MacGillivray1975),buttheylackedaccuracy.The“SyntheticFieldMethod”(SFM)wasdevelopedbyGonz´alezetal.(1998)tocorrectanextinctionmeasurementbasedonthenumberofdistantgalaxiesinanHSTimage,fortheeffectsofcrowdingandconfusionbytheforegroundspiraldisk.

The“SyntheticFieldMethod”followsaseriesofsteps.First,thenumberofdistantgalaxiesinanHSTsciencefieldisdetermined.Second,aseriesofsimulated(“synthetic”)fieldsaremade.Ineachofthesefields,atypicalbackground(e.g.,theHubbleDeepField)isfirstdimmedbyagrayscreenandaddedtothesciencefield.Third,theaddeddistantobjectsareidentifiedinthesesyntheticfields.Thefourthstepistomeasuretherelationshipbetweenthenumberoftheseidentifiedsyntheticdistantgalaxiesandbackgrounddimming.Fromthisrelationandtheoriginalnumberofactualdistantgalaxiesfoundinthesciencefield,anaverageopacitycanbefound.Itisimportanttoremakethesyntheticfieldsforeachsciencefieldbecausethecrowdingandconfusionissuesareuniqueineachcase.

Anadditionaluncertaintyintheresultingaverageextinctionmeasurementisthecos-micvarianceintheintrinsicnumberofdistantgalaxiesbehindtheforegrounddisk.Theuncertaintyduetocosmicvariancecanbeestimatedfromthetwo-pointcorrelationfunctionofdistantgalaxiesandfoldedintothePoissonianerror.ThecosmicvarianceuncertaintyisofthesameorderasthePoissonstatisticalerrorforsmallnumbers(Foracompletedis-cussionontheuncertaintiesoftheSFM,seeHolwerdaetal.2005a).Therefore,single-field

–7–

SFMmeasurementsremainuncertain,butameaningfulconclusioncanbedrawnfromacombinedsetofsciencefields.

WehaveappliedthismethodsuccessfullyonarchivalWFPC2data.Holwerdaetal.(2005b)presenttheaverageradialopacityprofileofspiraldisksandtheeffectofspiralarms.Thespiralarmsaremoreopaqueandshowastrongradialdependence,whilethemoretransparentdiskshowsaflatprofile.Holwerdaetal.(2005c)compareHIradialprofilestotheopacityones,andconcludethatnogoodrelationbetweendiskopacityandHIsurfacedensityradialprofilescanbefound.However,Holwerdaetal.(2005c)findthatthesub–mmprofilefromMeijerinketal.(2005)generallyagreeswiththeiropacitymeasurementsofM51.Holwerdaetal.(2005e)comparetherelationbetweensurfacebrightnessanddiskopacity;thisrelationisstronginthespiralarms,butweakintherestofthedisk.

Gonz´alezetal.(2003)predicted,basedonsimulateddata,thattheoptimumdistancefortheapplicationoftheSFMwithcurrentHSTinstrumentsisapproximatelythatofVirgo.Theidentificationofbackgroundgalaxiessuffersincloserdisks,asthestellardiskbecomesmoreresolved,compoundingconfusion.Thisoptimumdistance,combinedwiththeavailabilityofdeepHST/WFPC2imagesfromtheCepheidExtragalacticDistanceScaleKeyProject,resultedinthesamplepresentedinHolwerdaetal.(2005b).Holwerdaetal.(2005d)confirmedtheresultsfromGonz´alezetal.(2003)usingthissample,withforegrounddisksspanningdistancesbetween3.5and35Mpc.AselectioneffectoftheKeyProjectisthatthemajorityoftheHSTsciencefieldsisconcentratedonspiralarmsandexcludethecentersofthegalaxies.

Here,wepresentaverageextinctionvaluesforthewholeWFPC2field–of–view,mini-mizingtheuncertaintiestotheextentpossible.Inourinitialpapers,wedidnotapplyaninclinationcorrectiontotheopticaldepthsbecausethecorrectiondependsstronglyonthedustgeometry(seethediscussioninHolwerdaetal.2005b).However,inthispaperweassumeasimpledustmodelin§6.Theappropriateinclinationcorrection–×cos(i)–hasbeenappliedtothepointsinFigures4and5,andinTable4.Theuncertaintiesinthetablesandfiguresreflectthe1-sigmaconfidencelevelsproducedbythecombinationofthePoissonerrorandthecosmicvarianceofbackgroundgalaxies.

–8–

3.2.

SEDopticaldepthestimate

TheaveragediskopticaldepthisderivedfromtheSpitzerobservations.First,thesurfacebrightnesseswithintheWFchips’footprintaremeasured3(seeFigure1).Second,theseareconvertedintoadustsurfacedensityusinganSEDmodel.Third,thissurfacedensityistranslatedintoanI-bandopticaldepth.

AlltheIRACandMIPSdataareconvolvedtothepoorestresolutionofthe160micronobservations(seeTable1),andthepixelscaleissetto9”.Thisisdonewiththegauss,wcsmapandgeotrantasks,underIRAF.Subsequently,theoverallfluxismeasuredintheWFPC2fieldofview(Figure1).BecausetheL-shapedapertureisahighlyunusualone,theaperturecorrectionremainsuncertain,butnotnegligible,sincetheFWHMat160micron

(40′′.0)isoftheorderoftheaperturediameter(3×1′.3×1′

.3inanL-shape).PublishedaperturecorrectionsfortheIRACinstruments(Horaetal.2004)overestimatethecorrectionforextendedobjects(Jarrett2005).HereweusetheaperturecorrectionsforextendedsourcesfromJarrett(2005)forIRACfluxes,4andfromMuzerolleetal.(2005)fortheMIPSfluxes5(seealsoTable1).Table2givestheaveragesurfacebrightnessesforthesevenSpitzerchannelsinthefield-of-viewofthethreeWFchipsoftheWFPC2array.Theuncertaintiesarederivedfromthevarianceinthesky.Generally,thesurfacebrightnessesagreewiththeresultspresentedbyDaleetal.(2005)fortheentiredisks.

Thesecondstepistoconvertthesesurfacebrightnessestoadustsurfacedensity.Ini-tially,wefittedonlytheMIPSfluxeswithtwoblackbodiesandderivedsurfacedensitiesfromthese(Holwerdaetal.2006).However,amorerigoroustreatmentoftheIRfluxescanbedonewithaSEDmodel,suchastheonepresentedinLi&Draine(2001).Thismodelusesthephysicsofgrainheatingandreradiation,andamodeldistributionofgrainsizesandtypes.TheupdatedversionfromDraine&Li(2007)hasbeenfittothedata,andtheresultsareshowninFigure2.Thederivedstellaranddustsurfacebrightnesses,dustsurfacedensity,andmeantemperaturearepresentedinTable3.Dustsurfacedensitiesarebetween0.1and1.4×106M⊙kpc−2,withmeantemperaturesbetween14.6and17.8K.

Themeandusttemperaturesareobtainedfromthemeanradiationscaling,U

¯,6intheDraine&Li(2007)model(T2intheirequation18).Themodelusesadistribution

–9–

oftemperaturesandgrainsizes.Thereforethemeantemperatureisanindicationofthethermalequilibriumpointofthebulkofthedust.Mostofthedustiscold(T<25K).Theseresultsareanobviousimprovementoverasimplesingle-temperaturefit,butthemodelparametersinTable3arestillnotfullyconstrained;disagreementbetweendataandmodelatthePAHpeakat8microncouldbeaneffectofmetallicityorthepresenceofabrightHIIregion.The70and160µmfluxeshintatcolderormoredustinthedisk(Figure2).Therearethreecaveatstothefits:(1)alackofsub–mmdata,(2)thesinglecolorISRFusedand(3)averagingoverdifferenttypesofemissionregions,i.e.,HIIregionsandthegeneraldisk.

Additionalsub-mmdataofcomparablequality,neededtobetterconstrainthemodelandespeciallythecolddustemission,willnotbeavailableuntilSCUBA2startsoperationsontheJCMTandthelaunchofHerschel.7Atpresent,comparable-qualitysub-mmmapsareavailableonlyforNGC5194(Meijerinketal.2005)andNGC7331(Reganetal.2004).Draineetal.(2007)discussSEDmodelswithandwithoutsub-mmdata.

Thesecondcaveatinthederivationofdustmassistheassumptionofaconstantcolorfortheinterstellarradiationfield(ISRF)illuminatingtheemittingdust.Inreality,dustgrainsdeeperinaduststructurewillencounterradiationfieldthatisnotonlydimmedbutalsoreddenedand,hence,willcontributelessfluxtotheFIRemission.Locally,theISRFwillalsodependontheageofthenearbystellarpopulation.DuetothereddeningoftheISRFdeeperinthecloud,densecloudscouldcontainmoredustmassintheircentersthaninferredfromjusttheFIRemission.Additionalsub-mmobservationswillhelpresolvethisuncertaintyintheSEDopticaldepth.Draineetal.(2007)discussfitsofthemodeltothetotalfluxesoftheSINGSgalaxieswithandwithoutadditionalsub-mmdata.TheyfindthattheFIRestimateunderestimatesof1.5timesthedustmassmore(5outof17cases,notablyNGC3627and7331ofoursample)thanoverestimatesit(onlyM51ofthe17).

ThethirdcaveatisthatthemodelvaluesareanaverageovermanydifferenttypesofISMregions,eachwithadifferentheatingmechanism,duststructureandcomposition(e.g.,photo-dissociationregions,cirrus,andstar-formingregionsinspiralarms).TheDraine&Li(2007)model’sassumptionsholdbetterforsomeregionsthanforothers,butweusetheresultsas“typical”forthesedisks.TherelativecontributionofPAHemissiontotheSEDisafunctionofISMgeometryaswellasirradiationandcomposition(e.g.,Silvaetal.1998;Piovanetal.2006).Togetherwithabetter-constrainedFIR/sub-mmSEDonecouldconstrainISMgeometrysolelyfromtherelativecontributionstotheSED.Draineetal.

–10–

(2007)discusstheapplicationoftheDraine&Li(2007)modeltowholedisksoftheSINGSgalaxies.

Thedustsurfacedensityistranslatedintoanaverageopticaldepthwiththeabsorptioncrosssectionperunitdustmass,κabs(λ),andgrainalbedofromDraine(2003)fortheJohnsonI-band(865.5˚A.):τm=κabs×(1−Albedo)×Mdust/area.TheseopticaldepthvaluesarepresentedinTable4.

4.CloudsizeandtheSFM

Itcontinuestobedifficulttoconstraindustycloudgeometryfrommodelsofeitherextinctionoremission.Inthissection,wereviewwhatcanbelearned,solelyfromtheSFMmeasurements,aboutthegeometryoftheextinctingmedium.

InHolwerdaetal.(2005b),twoindicationsthatthedustdiskisclumpyareidentified:(1)theaveragecolorofthedistantgalaxiesisindependentofthediskopacityimpliedbytheirnumber,and(2)themeasurementofdiskopacityisindependentofinclination.Thelackofarelationbetweentheaverageopacityofthediskandtheaveragecolorofthedetectedgalaxiescanbeexplainedbytwoscenarios:(1)someofthebackgroundgalaxiesarecompletelyblockedbylargeclouds,andsomearenot.Thecolormeasurementisdoneonbackgroundobjectsthatdonotsufferfromextinctionand,hence,reddening.Alternatively,(2)allbackgroundgalaxiesaredimmedbycloudssmallerthantheprojecteddistantgalaxies.Consequently,someofthedistantgalaxiesaredimmedenoughtodropbelowthedetectionthreshold.Anydetectedgalaxy’scoloris,however,measuredfrommostlyunreddenedflux.8However,wenotethatarelationbetweenthereddeningandderivedextinctionfromthedistantgalaxiesisdifficulttodetectbecause(1)thespreadincolorsofdistantgalaxiesissubstantialand(2)colorismeasuredfromthedetectedgalaxies–automaticallytheleastdimmed–whereasopacityismeasuredformthemissinggalaxies.

Theinclinationeffectontheapparentopticaldepthfromthenumberofdistantgalaxiesisminimal(seeHolwerdaetal.2005b,,§5.1andFigure3).Assumingathinlayerofopticallythickclouds,theapparentopticaldepthofthedisk,measuredfromthenumberofdistantgalaxies,isdominatedbytheapparentfillingfactorofclouds.Theprojectedfillingfactor

–11–

doesnotchangemuchwithinclination:aflatcloudcovering40%ofacertaindisksectionstillcovers40%oftheinclinedsection.Onlywhentheheightofthecloudbecomesimportant–whentheinclinationisclosertoedge-on–,doestheapparentfillingfactorchange.Thisexplanationforthelackofaninclinationeffectintheopacityprofilesdoesnotdependonthesizeoftheclouds.Itcouldbeasingle,large,cloudormanysmallonesintheplaneofthedisk.However,theopticaldepthvaluesinHolwerdaetal.(2005b)arefromdifferentsectionsofthedisks–althoughgenerallycenteredonaspiralarm–andtheeffectofsmallinclinationdifferencescouldwellhavebeenmaskedbycomparingdifferentregionsinthedisks.InHolwerdaetal.(2005b)wedidnotapplyaninclinationcorrectionbecauseitdependsontheassumeddustgeometry.Inthispaperwedoassumeadustgeometryandhencemakeaninclinationcorrection(§6).

ThesimulationsintheSFMassumeagrayscreen,anuniformunclumpeddustlayerwithopacityequalintheVandIbands.TheSFMopacitymeasurementsinthispaperarebasedonsuchsimulations.InHolwerda(2005),weranaseriesofsimulationsonNGC13659tocharacterizetheeffectofaveragecloudcross-sectiononthenumberofdistantgalaxiesobservablethroughadisk.

Figure3showstheeffectofcloudsize,expressedinpixels,onthesimulatedrelationbetweenaverageopacityandnumberofdistantobjects.Ineachsimulation,wefixacloudsizeandvarytheirnumbertoincreasediskopacity.Anensembleofunresolvedcloudsiseffectivelythegrayscreen.ForcloudsresolvedwithHST,morethan2pixels10,therelationbetweenopacity(cloudfillingfactor)andnumberofdistantobjectsbecomesmuchshallower.Thesamenumberofdistantgalaxiesobservedwouldthenimplyamuchhigheropacityofthedisk.BecausetheSFM(calibratedwithagrayscreen)generallyagreeswellwithmeasurementsfromoverlappinggalaxies(Holwerdaetal.2005b),itseemsunlikelythatthedisk’sopacityispredominantlyduetolarge,resolvedclouds.Apixelof0′′.05atthedistanceofNGC1365(18Mpc)is4pcinlinearsize.ItisthereforeimpliedthatthestructureoftheISMresponsibleforthediskopacitymeasuredwiththeSFMvariesinopticaldepthonscalesof∼10pcorless.

FromtheSFMmeasurementsalone,thecloudgeometryisimpossibletodetermine.Onlywhenadditionalinformationisused–e.g.,thegeneralagreementwiththeoccultinggalaxytechnique–itfavorssmall(unresolved)scalesfortheclouds.Therefore,toconstraincloudgeometry,informationfromtwodifferenttechniquesneedstobecombined.

–12–

5.

Opticaldepths

Table4presentstheopticaldepthestimatesfromtheSyntheticFieldMethodandtheSEDmodel(Draine2003;Draine&Li2007),fortheWFPC2field-of-view.Theopticaldepthsrangebetween0.1and3.5magnitudesintheI-band.Themeasurementsarefordifferentpartsofdifferentspiraldisks(Figure1),explaininginparttherangeinvalues.TheopticaldepthestimatespresentedheremayappearhighfortheJohnsonI-band,comparedwithotherextinctionestimates(e.g.,thosefrominclinationeffectsorreddening),buttheseare(1)fortheentireheightofthedisk,and(2)generallycenteredonaspiralarm.TypicalextinctionvaluesintheI-bandareseveraltenthsofamagnitudeforadustscreeninfrontofthestellarspiraldisk(e.g.,Meyeretal.2006).TwoofthederivedSFMopacitiesarenegative,possiblytheeffectofanoverdensityofdistantgalaxiesbehindthetargetgalaxy.ThediscrepancyinNGC5194-1maybeduetomisidentificationofbackgroundgalaxies,astheyaredifficulttoidentifyinthisfield.

Figures4and5showthevaluesofdiskopacitybybothmethods,overthesamesectionofthedisk.Bothmethodsgenerallyagreewithintheuncertaintiesofthemeasurements.TheagreementisbetterthanourinitialestimatefromablackbodyfittotheMIPSfluxesinHolwerdaetal.(2006).Thegeneralagreementandthemeantemperatureofthedust(Table3)implythatmostofadisk’sopacityisduetothecolddustinthedisk.

6.Modelofcloudgeometry

TherelationbetweentheapparentandaverageI-bandopticaldepthmeasurements–thefirstfromthenumberofdistantgalaxiesinHSTimagesandthesecondderivedfromtheSpitzerSED–couldrevealthenatureoftheprevalentstructureintheISM.

Theaprioriassumptionsarethat(1)allduststructureistransparenttotheFIRemissionfromwhichthedustsurfacedensityisestimatedintheSEDmodel,and(2)theentirevolumeofthecloudemitsintheFIR.WeadoptModelCfromNatta&Panagia(1984),inwhicharandomlydistributedseriesofclumpscoversthearea.Theseauthorsdefinetwoopticaldepths:(1)thetypicalopticaldepth(τm),i.e.,theaverageopticaldepththatisproportionaltothedustmass;and(2)theapparentopticaldepth(˜τ),ortheopticaldepthifauniformlayerwouldcoverthearea.

Ourtwomeasurementsofopticaldepth–SEDandSFM–correspondtothesetwoopticaldepths,averageandapparent.AnopticaldepthbasedontheSEDdependsonthedustmasswithinthearea,andhencecorrespondstoτm.TheSFMopticaldepthistheapparentoptical

–13–

depthaveragedoverthearea,andhenceτ˜.Thesetwoopticaldepthsneednotbethesame,andtheirrelationisanindicationofhowclumpedthemediumis.

Letusassumeanumberofsmallduststructureswithaheight(h),anaveragegraincross-section(σ),andagrainemissivity(Q).Thegrainnumberdensityinthecloudsisdenotedbynd,andtheaveragenumberofcloudsinaline-of-sightisn.Weassumeallclumpshavethesameopticaldepthτc:

τc=hndσQ.

Theaverageopticaldepth(τm)isthen:

τm=n×τc,

(2)(1)

andtheapparentopticaldepthcanbederivedifoneassumesaGaussiandistributionofthenumberofcloudsalongthepossiblelines-of-sightandsumthecontributionsofallclouds(seeequations15and17-19inNatta&Panagia1984):

τ˜=n×(1−e−τc),

withasymptoticvaluesforbothopticallythinandthickclouds:

τc→0,⇒τm→0,τ˜→τm,

(4)(3)

τc→∞,⇒τm→∞,τ˜→n.

(5)

Wenotethattheinferreddustmassinthedisk(Mdust)isproportionaltothenumberof

clouds(n)andthecloudopticaldepth(τc).Theratiooftheapparentovertheaverageopticaldepthis:

τ˜

τc

,

(6)

leavingonlytheopticaldepthoftheclouds(τc),andhencethegraindensity(nd)andthe

cloudsize(h)asthevariables.OurfittotherelationbetweenSFMandSEDopticaldepthestimatesonlyhasτcasthevariable(Figure4).

–14–

Wecannowuseequation6toderiveτcfromafittotheopticaldepthsfromSED(τm),andfromthenumberofdistantgalaxies(˜τ).Wewanttoanswerthreequestions.Arethecloudsinthediskstypicallyopticallythinorthick?Ifalldisksareequal,whatistheimpliedcloudopticaldepth?Howmanycloudslietypicallyalongagivenline-of-sight?

6.1.Opticallythickorthinclouds?

Opticallythinclouds(τc<<1)resultinaratioofopticaldepthsclosetounity:

τ˜

τc

1−(1−τc)

τm

=

1−e−τc

–15–

σ=0.03µm2

andQ=3

󰀁β

=1.5×10−3withβ=2(Hildebrand1983)11.Thevalueof0.4forτacloud160

cimpliesheight,h,of∼60pc!Muchlargercloudscouldberesolvedinextinctionmapsofthesedisksbasedonstellarreddening.InthecaseofNGC3627,NGC5194,NGC6946andNGC7331,thereisaclearspiralarminthereddeningmap(Meyeretal.2006;Holwerdaetal.2007);theotherreddeningmapsaresmoothordonotextendouttocoverthewholeWFPC2pointing.

Amorelikelyscenarioisthatthereisaninverserelationbetweentheclouddensityndandscaleh.Sucharelationcanbeseeningiantmolecularclouds(GMC)ofourownGalaxy(e.g,Solomonetal.1987).Inthiscase,thesingleopticallythincloudcanbereplacedbysmalleropticallythickones.WenotethatthelargestGMCsareoftheorderof60pc.Thevalueof60pccloudsappearsincontradictiontotheimpliedsizeintheSFMcali-bration(∼10pc).However,thetypicalcloudsizecanbe60pcandstillthediskopacitycanchangeoversmallerscales,ifseveralpartiallyoverlappingcloudsareseeninprojection.Theinverserelationbetweenscaleanddensitywouldalsohelpmakethetwoscalescompatible.Ourdataareconsistentwithopticallythinclouds(τc=0.4)andtheiraverageopacityvalueimpliesatypicalcloudsizethatisunresolvedwithSpitzerinourgalaxies.

6.3.CloudNumbers

Theabovefittotherelationbetweenτ˜andτmindicatesthat,onaverage,morethanonecloudisneededalongtheline-of-sightinmostdisks(¯n=2.6).However,theassumptionwasthatτchadasinglevalueforallthedisks.In§6.1,wearguedthattheratiobetweenτ˜andτmimpliedtheτcisopticallythin.Itlogicallyfollowsthatopticallythickdisksmusthavemorethanasinglecloudalongtheline-of-sight.

Figure5illustratestheeffectofnumberofcloudsalongtheline-of-sight(n)ontherelationbetweenτ˜andτm,whenτcisfreelyincreasedfrom0toτm/n(thelineshavebeendrawnaccordingtoequations2and3).Wenotethatalldisksareconsistentwithmanycloudsalongtheline-of-sight–includingtheopticallythinones,alsobecausetheylieintheopticallythincloud(˜τ/τm∼1,τc<1)regime.

–16–

6.4.

PotentialImprovements

Therearemanyrefinementstobemadetothesimplemodelpresentedhere.Someimprovementsforfuturecomparisonsbetweenthesetwomeasurementsofopticaldepthare:(1)adistributionofcloudsizesforboththeSFMcalibration,aswellasinthemodelexplainingtheratiobetweenSFMandSEDopticaldepths.AmodeldistributioncanbetakenfromobservationsofGMCsinourownGalaxyandnearbyones(Heyeretal.2001;Rosolowsky2005).Thecross-sectiondistributioncouldbeusedinSFMmeasurementsinthefuture.Across-sectiondistributioncanonlybeapplied,iftheforegrounddiskisatasingle,fixeddistance;onlyonecountsthoughasingleforegroundgalaxyareused.Therearethreeface-onspiralswithenoughsolidangleinHSTimagingaswellasadditionalSpitzerdata:M51,M81andM101.(2)TheSEDmodelcanbemuchbetterconstrainedwithadditionalsub-mmobservations,theopportunitiesforwhichwillexpanddramaticallyinthenearfuture(SCUBA2ontheJCMTandHerschelsatellite).(3)Theeffectsofgranddesignspiralarmsandgalacticradiuscouldbeidentifiedinasingledisk;thecomparisonSFMandSEDisnotmadefordifferentsectionsofthediskscombined.(4)AfutureSEDmodelcantakeintoaccountthereddeningoftheinterstellarradiationfield,asitpenetratestheISM.ThiswouldrequireacomprehensivetreatmentoftheISMstructureinadditiontoitstemperature,compositionandirradiation.

7.Conclusions

Toconstrainmodelsofthespiraldisk’senergybudgetwithtypicalvaluesforthesizeofdustycloudsintheISM,wecomparetwotechniquestoextracttheaverageandapparentopticaldepthsofasectionofspiraldisk.FromthecomparisonbetweenSFMandSEDresults,weconcludethefollowing:

1.TheSFM’scalibrationaloneimpliesprojectedcloudscalespredominantlyunresolvedwithHST(oftheorderof10pcinNGC1365,see§4andFigure3).2.Thedustresponsibleforthedisk’sopacityispredominantlycold(T<25K,Table3).3.Theaverageandapparentopticaldepthsofthesedisksections,measuredfromSEDandSFMrespectively,generallyagree(Figure4and5).Thisimpliesgenerallyopticallythinclouds(τc<1,§6.1).4.Thefittotheratiobetweenapparentandaverageopticaldepthmeasurements,τ˜/τm,indicatesacloudopticaldepth,τc,of0.4,morethanasinglecloudalongtheline-of-sight,andacloudsizeof∼60pc.Ifseveralpartiallyoverlappingcloudsareseenin

–17–

projectionthroughthedisk,thedisk’sopacitywillchangeoversmallerscales,consistentwithconclusion1.

6.Opticallythickdisksappeartohavemorethanasinglecloudalongtheline-of-sight(Figure5)andopticallythindisksmayhaveseveralcloudsaswell.Futureworkusingcountsofdistantgalaxiesthroughaforegrounddiskcouldbeusedtofindcoldduststructuresatlargergalacticradii,providedasufficientlylargesolidanglehasbeenimagedwithHST/ACS’ssuperbresolution.12Notably,theACSdataonM51,M81andM101areverypromisingforsuchananalysis.13Spitzerobservationsofthesenearbydisksarealsoavailable,makingasimilarcomparisonbetweenSEDandapparentopticaldepthpossibleforportionsofthesedisks.Thetypicalcloudscaleforspiralarmsordisksectionsorasafunctionofgalacticradiuscouldthenbefound.TheSCUBA-2instrumenthasrecentlybeeninstalledontheJamesClerkMaxwellTelescope.AprojectwithSCUBA-2tomaptheSINGSgalaxiesintwosub-mmbandswillimprovefutureSEDmodellingofthesespiraldiskssignificantlyovertheSEDmodelspresentedhere.

ThisworkisbasedinpartonarchivaldataobtainedwiththeSpitzerSpaceTelescope,whichisoperatedbyJPL,CalTech,underacontractwithNASA.ThisworkisalsobasedonobservationswiththeNASA/ESAHubbleSpaceTelescope,obtainedattheSTScI,whichisoperatedbytheAssociationofUniversitiesforResearchinAstronomy(AURA),Inc.,underNASAcontractNAS5-26555.

TheauthorswouldliketothankT.Jarrett,formakinghisaperturecorrectionsofextendedsourcesavailabletousatanearlystage,andErikRosolowsky,forusefuldiscussionsonLocalGroupcloudsizes.WewouldliketothankMaartenBaesfordiscussionofthemotivation.WewouldalsoliketothankGeorgeBendo,ErikHollenbackandKristenKeenerfortheircommentsonearlierdraftsofthispaper.

REFERENCES

Alton,P.B.,Bianchi,S.,Rand,R.J.,Xilouris,E.M.,Davies,J.I.,&Trewhella,M.1998,

ApJ,507,L125

–18–

Alton,P.B.,Xilouris,E.M.,Misiriotis,A.,Dasyra,K.M.,&Dumke,M.2004,A&A,425,

109Andredakis,Y.C.&vanderKruit,P.C.1992,A&A,265,396

Bendo,G.J.,Dale,D.A.,Draine,B.T.,Engelbracht,C.W.,Kennicutt,Jr.,R.C.,Calzetti,

D.,Gordon,K.D.,Helou,G.,Hollenbach,D.,Li,A.,Murphy,E.J.,Prescott,M.K.M.,&Smith,J.-D.T.2006,ApJBendo,G.J.,Joseph,R.D.,Wells,M.,Gallais,P.,Haas,M.,Heras,A.M.,Klaas,U.,

Laureijs,R.J.,Leech,K.,Lemke,D.,Metcalfe,L.,Rowan-Robinson,M.,Schulz,B.,&Telesco,C.2003,AJ,125,2361Berlind,A.A.,Quillen,A.C.,Pogge,R.W.,&Sellgren,K.1997,AJ,114,107Bianchi,S.2007,ArXive-prints,705

Bianchi,S.,Davies,J.I.,&Alton,P.B.2000a,A&A,359,65

Bianchi,S.,Ferrara,A.,Davies,J.I.,&Alton,P.B.2000b,MNRAS,311,601Boissier,S.,Boselli,A.,Buat,V.,Donas,J.,&Milliard,B.2004,A&A,424,465

Calzetti,D.,Kennicutt,R.C.,Bianchi,L.,Thilker,D.A.,Dale,D.A.,Engelbracht,C.W.,

Leitherer,C.,Meyer,M.J.,Sosey,M.L.,Mutchler,M.,Regan,M.W.,Thornley,M.D.,Armus,L.,Bendo,G.J.,Boissier,S.,Boselli,A.,Draine,B.T.,Gordon,K.D.,Helou,G.,Hollenbach,D.J.,Kewley,L.,Madore,B.F.,Martin,D.C.,Murphy,E.J.,Rieke,G.H.,Rieke,M.J.,Roussel,H.,Sheth,K.,Smith,J.D.,Walter,F.,White,B.A.,Yi,S.,Scoville,N.Z.,Polletta,M.,&Lindler,D.2005,ApJ,633,871Dale,D.A.,Bendo,G.J.,Engelbracht,C.W.,Gordon,K.D.,Regan,M.W.,Armus,L.,

Cannon,J.M.,Calzetti,D.,Draine,B.T.,Helou,G.,Joseph,R.D.,Kennicutt,R.C.,Li,A.,Murphy,E.J.,Roussel,H.,Walter,F.,Hanson,H.M.,Hollenbach,D.J.,Jarrett,T.H.,Kewley,L.J.,Lamanna,C.A.,Leitherer,C.,Meyer,M.J.,Rieke,G.H.,Rieke,M.J.,Sheth,K.,Smith,J.D.T.,&Thornley,M.D.2005,ApJ,633,857Dale,D.A.,dePaz,A.G.,Gordon,K.D.,Hanson,H.M.,Armus,L.,Bendo,G.J.,

Bianchi,L.,Block,M.,Boissier,S.,Boselli,A.,Buckalew,B.A.,Buat,V.,Burgarella,D.,Calzetti,D.,Cannon,J.M.,Engelbracht,C.W.,Helou,G.,Hollenbach,D.J.,Jarrett,T.H.,Kennicutt,R.C.,Leitherer,C.,Li,A.,Madore,B.F.,Martin,D.C.,Meyer,M.J.,Murphy,E.J.,Regan,M.W.,Roussel,H.,Smith,J.D.T.,Sosey,M.L.,Thilker,D.A.,&Walter,F.2007,ApJ,655,863

–19–

Dasyra,K.M.,Xilouris,E.M.,Misiriotis,A.,&Kylafis,N.D.2005,A&A,437,447Davies,J.I.,Alton,P.,Trewhella,M.,Evans,R.,&Bianchi,S.1999,MNRAS,304,495Domingue,D.L.,Keel,W.C.,Ryder,S.D.,&White,R.E.1999,AJ,118,1542Domingue,D.L.,Keel,W.C.,&White,R.E.2000,ApJ,545,171

Dopita,M.A.,Fischera,J.,Sutherland,R.S.,Kewley,L.J.,Leitherer,C.,Tuffs,R.J.,

Popescu,C.C.,vanBreugel,W.,&Groves,B.A.2006a,ApJS,167,177Dopita,M.A.,Fischera,J.,Sutherland,R.S.,Kewley,L.J.,Tuffs,R.J.,Popescu,C.C.,

vanBreugel,W.,Groves,B.A.,&Leitherer,C.2006b,ApJ,7,244Draine,B.T.2003,ARA&A,41,241

Draine,B.T.,Dale,D.A.,Bendo,G.,Gordon,K.D.,Smith,J.D.T.,Armus,L.,En-gelbracht,C.W.,Helou,G.,Kennicutt,Jr.,R.C.,Li,A.,Roussel,H.,Walter,F.,Calzetti,D.,Moustakas,J.,Murphy,E.J.,Rieke,G.H.,Bot,C.,Hollenbach,D.J.,Sheth,K.,&Teplitz,H.I.2007,ApJ,663,866Draine,B.T.&Li,A.2007,ApJ,657,810

Driver,S.P.,Popescu,C.C.,Tuffs,R.J.,Liske,J.,Graham,A.W.,Allen,P.D.,&De

Propris,R.2007,ArXive-prints,704Elmegreen,D.M.,Kaufman,M.,Elmegreen,B.G.,Brinks,E.,Struck,C.,Klari´c,M.,&

Thomasson,M.2001,AJ,121,182Engelbracht,C.W.,Gordon,K.D.,Bendo,G.J.,P´erez-Gonz´alez,P.G.,Misselt,K.A.,

Rieke,G.H.,Young,E.T.,Hines,D.C.,Kelly,D.M.,Stansberry,J.A.,Papovich,C.,Morrison,J.E.,Egami,E.,Su,K.Y.L.,Muzerolle,J.,Dole,H.,Alonso-Herrero,A.,Hinz,J.L.,Smith,P.S.,Latter,W.B.,Noriega-Crespo,A.,Padgett,D.L.,Rho,J.,Frayer,D.T.,&Wachter,S.2004,ApJS,154,248Engelbracht,C.W.,Kundurthy,P.,Gordon,K.D.,Rieke,G.H.,Kennicutt,R.C.,Smith,

J.-D.T.,Regan,M.W.,Makovoz,D.,Sosey,M.,Draine,B.T.,Helou,G.,Armus,L.,Calzetti,D.,Meyer,M.,Bendo,G.J.,Walter,F.,Hollenbach,D.,Cannon,J.M.,Murphy,E.J.,Dale,D.A.,Buckalew,B.A.,&Sheth,K.2006,ApJ,2,L127Genzel,R.&Cesarsky,C.J.2000,ARA&A,38,761

Gonz´alez,R.A.,Allen,R.J.,Dirsch,B.,Ferguson,H.C.,Calzetti,D.,&Panagia,N.1998,

ApJ,506,152

–20–

Gonz´alez,R.A.,Loinard,L.,Allen,R.J.,&Muller,S.2003,AJ,125,1182

Gordon,K.D.,Bailin,J.,Engelbracht,C.W.,Rieke,G.H.,Misselt,K.A.,Latter,W.B.,

Young,E.T.,Ashby,M.L.N.,Barmby,P.,Gibson,B.K.,Hines,D.C.,Hinz,J.,Krause,O.,Levine,D.A.,Marleau,F.R.,Noriega-Crespo,A.,Stolovy,S.,Thilker,D.A.,&Werner,M.W.2006,ApJ,638,L87Gordon,K.D.,P´erez-Gonz´alez,P.G.,Misselt,K.A.,Murphy,E.J.,Bendo,G.J.,Walter,

F.,Thornley,M.D.,Kennicutt,Jr.,R.C.,Rieke,G.H.,Engelbracht,C.W.,Smith,J.-D.T.,Alonso-Herrero,A.,Appleton,P.N.,Calzetti,D.,Dale,D.A.,Draine,B.T.,Frayer,D.T.,Helou,G.,Hinz,J.L.,Hines,D.C.,Kelly,D.M.,Morrison,J.E.,Muzerolle,J.,Regan,M.W.,Stansberry,J.A.,Stolovy,S.R.,Storrie-Lombardi,L.J.,Su,K.Y.L.,&Young,E.T.2004,ApJS,154,215Gordon,K.D.,Rieke,G.H.,Engelbracht,C.W.,Muzerolle,J.,Stansberry,J.A.,Misselt,

K.A.,Morrison,J.E.,Cadien,J.,Young,E.T.,Dole,H.,Kelly,D.M.,Alonso-Herrero,A.,Egami,E.,Su,K.Y.L.,Papovich,C.,Smith,P.S.,Hines,D.C.,Rieke,M.J.,Blaylock,M.,P´erez-Gonz´alez,P.G.,LeFloc’h,E.,Hinz,J.L.,Latter,W.B.,Hesselroth,T.,Frayer,D.T.,Noriega-Crespo,A.,Masci,F.J.,Padgett,D.L.,Smylie,M.P.,&Haegel,N.M.2005,PASP,117,503Heyer,M.H.,Carpenter,J.M.,&Snell,R.L.2001,ApJ,551,852Hildebrand,R.H.1983,QJRAS,24,267

Hinz,J.L.,Misselt,K.,Rieke,M.J.,Rieke,G.H.,Smith,P.S.,Blaylock,M.,&Gordon,

K.D.2006,ApJ,651,874Hodge,P.W.1974,ApJ,192,21

Holwerda,B.W.2005,PhDthesis,KapteynAstronomicalInstitute

Holwerda,B.W.,Gonz´alez,R.A.,Allen,R.J.,&vanderKruit,P.C.2005a,AJ,129,1381—.2005b,AJ,129,1396—.2005c,A&A,444,101—.2005d,A&A,444,319

Holwerda,B.W.,Gonz´alez,R.A.,Calzetti,D.,Allen,R.J.,vanderKruit,P.C.,&the

SINGSteam.2006,arXiv:astro-ph/0603395

–21–

Holwerda,B.W.,Gonz´alez,R.A.,vanderKruit,P.C.,&Allen,R.J.2005e,A&A,444,

109Holwerda,B.W.,Meyer,M.,Regan,M.,Calzetti,D.,Gordon,K.D.,Smith,J.D.,Dale,

K.,Engelbracht,C.W.,Jarrett,T.,Thornley,M.D.,Bot,C.,Buckalew,B.A.,Kennicutt,R.C.,&Gonz´alez,R.A.2007,AJ,submittedHora,J.L.,Fazio,G.G.,Allen,L.E.,Ashby,M.L.N.,Barmby,P.,Deutsch,L.K.,Huang,J.S.,Marengo,M.,Megeath,S.T.,Melnick,G.J.,Pahre,M.A.,Patten,B.M.,Smith,H.A.,Wang,Z.,Willner,S.P.,Hoffmann,W.F.,Pipher,J.L.,Forrest,W.J.,McMurtry,C.W.,McCreight,C.R.,McKelvey,M.E.,McMurray,Jr.,R.E.,Moseley,S.H.,Arendt,R.G.,Mentzell,J.E.,Marx,C.T.,Fixsen,D.J.,Tollestrup,E.V.,Eisenhardt,P.R.,Stern,D.,Gorjian,V.,Bhattacharya,B.,Carey,S.J.,Glaccum,W.J.,Lacy,M.D.,Lowrance,P.J.,Laine,S.J.,Nelson,B.O.,Reach,W.T.,Stauffer,J.R.,Surace,J.A.,Wilson,G.,&Wright,E.L.2004,inMicrowaveandTerahertzPhotonics.EditedbyStohr,Andreas;Jager,Dieter;Iezekiel,Stavros.ProceedingsoftheSPIE,Volume5487,pp.77-92(2004).,ed.J.C.Mather,77–92Jarrett,J.2005,IRAC:ExtendedSourceCalibration

Kamphuis,P.,Holwerda,B.W.,Allen,R.J.,Peletier,R.F.,&vanderKruit,P.C.2007,

ArXive-prints/0706.2275Keel,W.C.&White,R.E.2001a,AJ,121,1442—.2001b,AJ,122,1369

Kennicutt,R.C.,Armus,L.,Bendo,G.,Calzetti,D.,Dale,D.A.,Draine,B.T.,Engelbracht,

C.W.,Gordon,K.D.,Grauer,A.D.,Helou,G.,Hollenbach,D.J.,Jarrett,T.H.,Kewley,L.J.,Leitherer,C.,Li,A.,Malhotra,S.,Regan,M.W.,Rieke,G.H.,Rieke,M.J.,Roussel,H.,Smith,J.T.,Thornley,M.D.,&Walter,F.2003,PASP,115,928Li,A.&Draine,B.T.2001,ApJ,554,778MacGillivray,H.T.1975,MNRAS,170,241

Meijerink,R.,Tilanus,R.P.J.,Dullemond,C.P.,Israel,F.P.,&vanderWerf,P.P.2005,

A&A,430,427Meyer,M.,Calzetti,D.,&Regan,M.2006,ApJ,1,1Misiriotis,A.&Bianchi,S.2002,A&A,384,866

–22–

Misiriotis,A.,Popescu,C.C.,Tuffs,R.,&Kylafis,N.D.2001,A&A,372,775

Muzerolle,J.,Gordon,K.,Engelbracht,C.,&Stansberry,J.2005,MIPSaperturecorrectionsNatta,A.&Panagia,N.1984,ApJ,287,228

Nelson,A.E.,Zaritsky,D.,&Cutri,R.M.1998,AJ,115,2273

P´erez-Gonz´alez,P.G.,Kennicutt,Jr.,R.C.,Gordon,K.D.,Misselt,K.A.,GildePaz,A.,

Engelbracht,C.W.,Rieke,G.H.,Bendo,G.J.,Bianchi,L.,Boissier,S.,Calzetti,D.,Dale,D.A.,Draine,B.T.,Jarrett,T.H.,Hollenbach,D.,&Prescott,M.K.M.2006,ApJ,8,987Piovan,L.,Tantalo,R.,&Chiosi,C.2006,MNRAS,366,923

Popescu,C.C.,Misiriotis,A.,Kylafis,N.D.,Tuffs,R.J.,&Fischera,J.2000,A&A,362,

138Popescu,C.C.&Tuffs,R.J.2003,A&A,410,L21

Popescu,C.C.&Tuffs,R.J.2005,inAIPConf.Proc.761:TheSpectralEnergyDistribu-tionsofGas-RichGalaxies:ConfrontingModelswithData,155–+Radovich,M.,Kahanp¨a¨a,J.,&Lemke,D.2001,A&A,377,73

Regan,M.W.,Thornley,M.D.,Bendo,G.J.,Draine,B.T.,Li,A.,Dale,D.A.,Engel-bracht,C.W.,Kennicutt,R.C.,Armus,L.,Calzetti,D.,Gordon,K.D.,Helou,G.,

Hollenbach,D.J.,Jarrett,T.H.,Kewley,L.J.,Leitherer,C.,Malhotra,S.,Meyer,M.,Misselt,K.A.,Morrison,J.E.,Murphy,E.J.,Muzerolle,J.,Rieke,G.H.,Rieke,M.J.,Roussel,H.,Smith,J.-D.T.,&Walter,F.2004,ApJS,154,204Rosolowsky,E.2005,PASP,117,1403

Seth,A.C.,Dalcanton,J.J.,&deJong,R.S.2005,AJ,130,1574Shapley,H.1951,ProceedingsoftheNationalAcademyofScience,37,133Silva,L.,Granato,G.L.,Bressan,A.,&Danese,L.1998,ApJ,509,103SINGSteam.2006,SINGSfourthdatadeliveryreleasenotes,SINGSteamSolomon,P.M.,Rivolo,A.R.,Barrett,J.,&Yahil,A.1987,ApJ,319,730Thornley,M.D.,Braine,J.,&Gardan,E.2006,ApJ,651,L101

–23–

Trewhella,M.,Davies,J.I.,Alton,P.B.,Bianchi,S.,&Madore,B.F.2000,ApJ,543,153Tuffs,R.J.&Popescu,C.C.2005,inAIPConf.Proc.761:TheSpectralEnergyDistribu-tionsofGas-RichGalaxies:ConfrontingModelswithData,344–+Tuffs,R.J.,Popescu,C.C.,V¨olk,H.J.,Kylafis,N.D.,&Dopita,M.A.2004,A&A,419,

821Wesselink,A.J.1961,MNRAS,122,509

White,R.E.&Keel,W.C.1992,Nature,359,129

White,R.E.,Keel,W.C.,&Conselice,C.J.2000,ApJ,542,761Witt,A.N.&Gordon,K.D.2000,ApJ,528,799

Xilouris,E.M.,Byun,Y.I.,Kylafis,N.D.,Paleologou,E.V.,&Papamastorakis,J.1999,

A&A,344,868

....

–24–

Fig.1.—ThefootprintsoftheWPFC2cameraonboardHST,onthe24micronimagesfromtheMIPSdetectoronboardSpitzer.MostoftheHSTimagesdonotincludethecenter,andarepointedonaspiralarm.NGC3621andNGC5195(M51)havetwoseparateWFPC2fieldsassociatedwiththem.ThePCchip,i.e,thesmallchipinthenookofthe“L”ofthethreeWFchips,isnotusedfortheSFManalysis,noraspartofourSpitzeraperture.

–25–

Fig.2.—TheSpectralEnergyDistributioninthe7Spitzerbands(IRAC/MIPS),foreachoftheWFPC2aperturesinFigure1.ThebestfittingmodelfromDraine&Li(2007)isshown.TherelevantparametersforeachfitareinTable3.

–26–

Fig.3.—DifferentsyntheticfieldswithdifferentdustdiskmodelsfromHolwerda(2005).AsetofsyntheticfieldsismadeusingdimmedHDFimages.Thisdimmingcanbeasmoothuniformgrayscreen(triangles),orsomedistributionofopaqueclouds(curves).TherelationbetweenthenumberofdistantgalaxiesfromtheHDFthatcanstillberetrievedandtheaverageopacityofthedimmingdependsontheassumedmodel.Large,resolvedcloudsblockfewerbackgroundobjectsgiventhesamefillingfactor.Asaresult,oneahigheropticaldepthisimpliedbytheintersectionofthecurveandnumberofobservedbackgroundgalaxies.ThedistancetoNGC1365is18Mpc,soapixelof0′′.05isequivalentto4pcinlinearsize.Thescalesintheabovesimulationscorrespond,therefore,tocloudswithcross-sectionswitharadiusof2,4,8,100and400pc,respectively

–27–

Fig.4.—ThemeanandapparentopticaldepthintheI-band,fromSED(τm)andSFM(˜τ).Thebestfitwithequation6totheratiosofthesevaluesisalsoshown(τc=0.4).Theaveragevaluefornumberofcloudsalongtheline-of-sight,n,isthen2.6.IfthenegativeSFMvaluesareincludedinthefit,thecloudopticaldepthrisestoτc=0.6andtheaveragenbecomes1.9.

–28–

Fig.5.—Modelvaluesofτmandτ˜,fromequations2and3,forfixedvaluesoftheaveragenumberofcloudsalongtheline-of-sight(n=0.5,1,2,3,4).Thecloudopticaldepthτcislefttovaryproportionallytoτm(τm=n×τc,equation2).Hencemaximumcloudopticaldepthsare6,3,1.5,1and0.75respectively.Ifopticallythincloudsaremadeupofopticallythinclouds,itseemsnecessarythatmorethanonecloudwillliealongtheline-of-sight.

–29–

Table1.SINGSdatadescription.IRACandMIPSpixelscales,PSFFWHM,and

aperturecorrections(thefactorbywhichthefluxesaremultiplied).

Instrument(band)

pixelscale

1

PSF(FWHM)

2

aperturecorrection

3

12

PixelscalesweresetbytheSINGSteam.

FWHMvaluesfortheIRACareconserva-tiveestimates.ActualFWHMvaluesarebetterthan2′′.5.TheIRACvaluesaretheinitialresultsfromT.Jarrett(privatecommunication),buttheydonotdiffersubstantiallyfromthefinalresults.

3

–30–

Table2.SpitzerchannelsurfacebrightnessintheWFPC2aperture(3WFs×1.3′×1.3′).

Galaxy

3.6µmMJy/sr

4.5µmMJy/sr

5.8µmMJy/sr

8µmMJy/sr

24µmMJy/sr

70µmMJy/sr

160µmMJy/sr

Table3.Modeloutput:stellaranddustsurfacebrightness,dustsurfacedensity,dustmeantemperature(T2inDraine&Li2007),fitquality,theparametersofstellar

irradiation–minimumandmaximumofthedistribution,meanirradiativefield,fractionof

dustexposedtomorethanUmin.Modelscanbefoundathttp://www.astro.princeton.edu/∼draine/dust/irem.html

Galaxyname

Lstar/area(L⊙/kpc2)×108

Ldust/area(L⊙/kpc2)×108

Mdust/area(M⊙/kpc2)×106

T(K)

χ2

Umin

Umax×106

¯U

γ×10−3

1e7

NGC2841NGC3198NGC3621-1NGC3627NGC4536NGC4725NGC5194-2NGC7331

1.80.60.73.70.50.51.80.6

0.30.20.52.10.10.11.70.2

0.50.30.41.10.10.21.40.2

14.615.016.217.015.714.616.015.4

4.153.732.452.112.323.011.832.15

0.700.501.001.000.800.500.800.70

10101.010101.01.010

0.80.61.01.40.80.50.90.7

1.07.52.624.52.70.011.74.5

U0.70

1e6

U0.50

1e6

U1.00

1e7

U1.00

1e7

U0.80

1e6

U0.50

1e6

U0.80

1e6

U0.70

MW3.1MW3.1

50

MW3.1

50

MW3.1

30

MW3.1

30

MW3.1

30

MW3.1

10

MW3.1

3020

model

name

–31–

Table4.Theapparent(˜τ)andaverage(τm)opticaldepthsinI-bandmeasuredinthe

′′

WFPC2field(3WFs1.3×1.3),uncorrectedandcorrectedforinclination.

Galaxy

τ˜

(SFM)

τ˜×cos(i)

τm(SED)

τm×cos(i)

τ˜/τm

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baoaiwan.cn 版权所有 赣ICP备2024042794号-3

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务