www.elsevier.com/locate/cma
ThegeneralizedfiniteelementmethodforHelmholtzequation:
Theory,computation,andopenproblems
TheofanisStrouboulis
aba,*ˇkab,RealinoHidajat,IvoBabus
aDepartmentofAerospaceEngineering,TexasA&MUniversity,CollegeStation,TX77843,USA
InstituteforComputationalEngineeringandSciences,UniversityofTexasatAustin,Austin,TX78712,USA
Received23May2005;receivedinrevisedform23September2005;accepted23September2005
Abstract
InthispaperweaddressthegeneralizedfiniteelementmethodfortheHelmholtzequation.WeobtainourmethodbyemployingthefiniteelementmethodonCartesianmeshes,whichmayoverlaptheboundariesoftheproblemdomain,andbyenrichingtheapproxi-mationbyplanewavespastedintothefiniteelementbasisateachmeshvertexbythepartitionofunitymethod.Hereweaddresstheq-convergenceofthemethod,whereqisthenumberofplanewavesaddedateachvertex,fortheclassofsmooth(analytic)solutionsforwhichwegetbetterthanexponentialconvergenceforsufficientlysmallhdependingonp.Animportantobservationisthatwecanmonitortheaccuracyinanycomputedsolutionquantityofinterestatnegligiblecostbyusingq-extrapolation.Ourresultsassumeexactintegrationofalltheemployedintegrals.Furtherstudiesareneededtoanalyzetheeffectsofthenumericalintegrations,andalsotheeffectoftheroundofferrors.
Ó2005ElsevierB.V.Allrightsreserved.
Keywords:Generalizedfiniteelementmethod(GFEM);Helmholtzequation;Exponentialconvergence;aposteriorierrorestimation
1.Introduction
ˇkaetal.[1],ThegeneralizedfiniteelementmethodoriginatedfromtheworkonthepartitionofunitymethodofBabus
ˇkaandMelenk(seeMelenk’sM.Sc.andPh.D.theses[2,3]andthepapersstemmingfromthesetheses[4–6]).LetandBabus
usalsonotethatOdenandDuartewerethefirsttoemploythepartitionofunitymethodinameshlesssettinginthecontextofthehp-cloudmethod[7,8].
Thegeneralizedfiniteelementmethod(generalizedFEMorGFEM)addressedhereisadirectextensionoftheclassicalfiniteelementmethodenrichedbythepartitionofunitymethodandwasproposedintheworksofStrouboulisetal.[9–15]forsolvingcoerciveellipticproblems(e.g.theLaplaceequation,theequationofheatconduction,etc.)inproblemswithcomplexdomainsusingenrichmentbyhandbookfunctions.Letusalsomentiontheworkontheextendedfiniteelementmethod(XFEM)byBelytschkoandco-workers[16,17]whichhassimilaringredients,andalsotheworkbyDuarteandco-workers[18].Themathematicalaspectsofthegeneralizedfiniteelementmethods,includingthemethodproposedhere,
ˇkaetal.[19–21]wheremanymorereferencescanbefound.ThereaderisalsoreferredwereaddressedintheworkofBabus
totheworksofLiszkaandOrkisz[22]andTworzydlo[23]ontheFDMwhichisafinitedifferenceanalogofthemeshlessapproach;seealsotherecentworksbyLiszkaandco-workers[24,25].
*Correspondingauthor.
E-mailaddress:strouboulis@aeromail.tamu.edu(T.Strouboulis).
0045-7825/$-seefrontmatterÓ2005ElsevierB.V.Allrightsreserved.doi:10.1016/j.cma.2005.09.019
4712T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731
Thisworkfocusesonthecomputationalaspectsofthegeneralizedp-versionofthegeneralizedFEMfortheHelmholtzequationanditstheoreticalbasisisgiveninChapter8ofthePh.D.thesisofMelenk[3],wherethetheoreticalaspectsofthepartitionofunitymethodfortheHelmholtzareaddressed.OtherimportantworksalongthesamelineswerecontributedbyLaghroucheandco-workers[26–28],byOrtiz[29],andbyAstleyandGamallo[30].Thethree-dimensionalversionofthemethodwasaddressedbyPerrey-Debainetal.in[31].LetusalsomentiontherelatedworksbyFarhatetal.[32,33]onthediscontinuousenrichmentmethod(DEM)whichalsoemploysenrichmentbyplanewavefunctionsusingaformulation
`zeetal.[34–36]onthevar-basedonthediscontinuousGalerkinwithLagrangemultipliers,andalsotheworkofLadeve
iationaltheoryofcomplexrays(VTCR)whichalsousesenrichmentsoftheapproximationbylocalsolutionsofthewaveequation.
Amainfeatureoftheapplicationofthemethodsenrichedbyplanewavesolutions(thePUMofMelenk[3],Bettessand
`zeetal.[34–36])isthattheycanobtainLaghrouche[26,27],theDEMofFarhatetal.[32,33],andtheVTCRofLadeve
accuratesolutions(e.g.solutionswitherror1%orbetterinrelativevalueoftheH1-seminormoftheerror)whileusingmesheswithmeshsizehofoneorseveralwave-lengthsk=2p/k.Themainlimitationofthemeshsizehinallthesemeth-odsisduetothepollutionduetothewavenumberwhichisamaincharacteristicofGalerkinsolutionoftheHelmholtz
ˇka[37,38],thebookbyIhlenburg[39],andthepaperofBabusˇkaandequation,seee.g.theworksofIhlenburgandBabus
Sauter[40].ThepollutioneffectcanbeunderstoodasashiftintheGalerkinsolutionwithrespecttotheexactsolutionduetonumericaldispersion,andithasbeenanalyzedinthecontextofhandhpfiniteelementmethodbyIhlenburgand
ˇka[37,38].Deraemaekeretal.[41]presentedageneralapproachforassessingthepollutionofvariousapproxima-Babus
ˇkaandSauter[40]addressedtheimportantquestionifthepollutionisavoid-tionsoftheHelmholtzequations,andBabus
ˇkaetal.[43,44]addressedtheablebyspecialdesignoftheapproximationmethodinoneandhigherdimensions.Babus
pollutioneffectforfiniteelementsolutionsoftheHelmholtzwithrespecttoa-posteriorierrorestimation.Aswewillseebelow,thepollutioneffectisthemainlimitingfactorofthemesh-sizeemployedbythegeneralizedFEMfortheHelmholtzequation.
Followingthisintroduction,wesummarizetheformulationoftheHelmholtzproblemwithRobinboundaryconditions,weformulatethegeneralizedFEMenrichedbyplanewavefunctionsusingCartesianmeshes,weaddresstheimplemen-tation,andthecomputationalresultsobtainedusingthegeneralizedp-versionofthemethod,andwegiveasummaryofoutstandingopenproblems.2.Preliminaries
InthissectionweoutlinethebasicresultsfortheHelmholtzproblemwithRobinboundaryconditionsinafinitedomain.FormoredetailsandproofsthereadershouldconsultChapter8inthePh.D.dissertationofMelenk[3].
Modelproblem(Helmholtzproblem):LetX&R2,beaboundeddomain,withboundaryoX=C1[C2,C1\\C2=;,asshowninFig.1.Wewillbeinterestedinthesolutionu,oftheboundary-valueproblem
ÀDuÀk2u¼finX;ou
¼g1onC1;onou
Àiku¼g2onC2.on
ð1aÞð1bÞð1cÞ
AlthoughallthefactsmentionedbelowholdalsoforX&Rn,forsimplicityandpracticalissuesrelatedwiththenumer-icalimplementationswearefocusingonthetwodimensionalcase,X&R2.
Γ2Γ1ΩFig.1.ExampleofadomainXwithinteriorboundaryC1,andouterboundaryC2.T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–47314713
Weakformulation(weakHelmholtzproblem):TheweakformulationoftheHelmholtzproblemisgivenby:Findu2H1(X)suchthatBðu;vÞ¼LðvÞ8v2H1ðXÞ;where
Bðu;vÞ¼LðvÞ¼
Z
X
ð2aÞ
Z
X
rurvdXÀk
2IXi¼1
2
Z
X
uvdXþik
I
C2
uvds;ð2bÞð2cÞ
fvdXþ
Ci
givds;
whereH1(X)isthespaceoffunctionswithsquare-integrablederivativesoverX.
Let
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidef22
jjjujjj¼krukL2ðXÞþk2kukL2ðXÞ.Wehave,
ð3Þ
Theorem1(Existenceanduniqueness).Letf2HÀ1(X),gi2HÀ1/2(Ci),i=1,2.Then,thereexistsauniquesolutionoftheHelmholtzproblemwhichsatisfies
!
2X
jjjujjj6CðX;kÞkfkHÀ1ðXÞþkgikHÀ1=2ðCiÞ.ð4Þ
i¼1
HereCðX;kÞindicatesthedependenceofConthedomainXandthewave-numberk.
Proof.ItissufficienttoconsiderthecasewithC1=;.Uniqueness(resp.existence)followsifwecanshowthat:ZZIruÁrvdXÀk2uvdXÆikuvdC¼0
X
X
C2
ð5Þ
withplus(resp.minus)signinfrontoftheboundarytermimpliesthatu=0.Choosingv=uandconsideringtheimaginary
partitfollowsthatu=0onC2.Thus,u2H10ðXÞ,andwehave
ZZ
2
ruÁrvdXÀkuvdX¼08v2H1ðXÞð6Þ
X
X
whichmeansthatusatisfiestheHelmholtzequationwithf=0,andhomogeneousboundaryconditionsonoX,fromwhich
itfollows(seeMelenk[3,p.117])thatuisidenticallyequaltozero.Fortheproofof(4),seeMelenk[3,pp.118–121].hRemark1.InthecasethatXisconvex,Cdoesnotdependonk.
InwhatfollowswewillassumethatXisanannulusandwewillletf=0.3.GeneralizedFEMfortheHelmholtzequation
h/Di;i
LetDhbeauniformmeshofsquaresofsizehcoveringthedomainX,asis,e.g.,showninFig.2(a).Let
¼1;...;nnodes,betheclassicalpiecewisebilinear‘‘hat’’functionsassociatedwiththenodeslocatedattheverticesofthesquares,andlet
ÈÉDhDhhdef
xD¼supp/¼x2Xj/ðxÞ>0ð7Þiii
nnodes
Dhh
bethesupportof/Diwhichconsistsofthefoursquareswhichsharethenode.Thenf/igi¼1
hnnodes
unitysubordinatetothecoverfxDsatisfyingigi¼1
nnodesXi¼i
h
/DonX;i1
h
k/DikL1ðR2Þ61;
h
kr/DikL1ðR2Þ6
isaLipschitzpartitionof
C
h
ð8Þ
Wewillconstructthespaceofgeneralizedfiniteelementsolutionsbycombiningthefollowingdiscretespacesoffunc-tionsonthemeshDh:
4714T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731
(a)(b)Fig.2.(a)ExampleofaCartesianmeshDhusedintheformulationofthegeneralizedfiniteelementmethodoveranannulardomainX.(b)Atypicalhexplodedviewofthehatfunction/Dioveritssupport.(a)Thestandardbi-p(tensorproduct)finiteelementspace
ÈÉp0p~SDh¼v2CðXÞvjsFs2Q;
ð9Þ
episthespaceofbi-p(tensorproduct)polynomialfunctionsofdegreepdefinedover^´andBa-s(seeinSzabowhereQ
2
ˇka[42,p.97]),andFs:^buss¼ðÀ1;1Þ!1,istheaffinetransformationh
^xx¼Fsð^xÞ¼xsþmid
22
mapping^s¼ðÀ1;1Þintothesquaresofsizeh,centeredatxsmid.(b)Thepartitionofunityspace
)(
nnodesX;qk;qDhh
Wkv¼/DDh¼ivivi2WlocðxiÞ;i¼1
whereW
k;qloc
ð10Þ
ð11Þ
'
2pn2pn
þysin¼spanwk¼expikxcos;n¼0;...;qÀ1qq
&
ð12Þ
nnisthelocalspaceoflinearcombinationsofplanewavestravellinginthedirectionsðcos2p;sin2pÞ,n=0,...,qÀ1.qq
hFig.3depictstheemployedwavedirectionsforq=1,3,5,7,9,and11,inatypicalpatchxDi.
hFig.3.ExamplesoftheemployedwavedirectionsinatypicalpatchxDi.T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–47314715
Generalizedfiniteelementsolution:Find
!qnfemnnodesXXXðiÞðiÞ;q;qh
upbkNkþ/DajWj2Skh¼h;pi
k¼1
i¼1
j¼1
ð13Þ
suchthat
;q;q
8v2SkBðuph;vÞ¼LðvÞh;p;
ð14Þ
whereNkdenotesastandardFEbi-pbasisfunctionsonDh,nfemisthetotalnumberofdegreesoffreedomforthebi-pFEðiÞh
basisfunctions,andWj;j¼1;...;qaretheemployedplanewavefunctionsinthepatchxDi.
Thestabilityandquasi-optimalityofthegeneralizedFEMisestablishedfromthefollowingresultswhichwereformu-latedandproveninMelenk[3].
Theorem2(Stabilityandquasi-optimality).LetXbeastar-shapeddomainwithsmoothboundary,andletSbediscreteapproximationspacessatisfying
2
infkvÀvkL2ðXÞþhkrðvÀvÞkL2ðXÞ6CðXÞhjvjH2ðXÞþð1þkÞjjjvjjjð15Þ
v2S
forallv2H2(X),withCindependentofvandh.ThenthereexistC1;C2;C3>0,dependingonlyonX,suchthatundertheassumption
ð1þk2Þh RBðu;vÞC2 Pinfsup u2Sv2Sjjjujjjjjjvjjj1þkand ;qjjjuÀuphjjj6C3infjjjuÀvjjj. v2S ð16Þð17Þ ð18Þ h Proof.SeeMelenk[3,pp.122–123].Wealsohave: Lemma1(ApproximationpropertyofgeneralizedFEMspace).Thegeneralizedfiniteelementspace ;qpk;qSkh;p¼SDhÈWDh def ð19Þ satisfies(15). Proof.TheprooffollowsfromMelenk[3,p.138]. h ItfollowsthatTheorem2isapplicableinthegeneralizedFEM. Remark2.Atpresent,wecannotsayaprioriwhatissufficientlysmallh,andwhatisthevalueofC3. Remark3.TheconstantC3in(18)isrelatedtothepollutionduetothewavenumber,whichisdirectlyrelatedtothenumericaldispersion.ThemaineffectisthatthewavenumberoftheGalerkinsolutionisdifferentfromthewavenumber ;q oftheexactsolution.ThepollutioninthesolutionuphoftheHelmholtzequationcanbemeasuredbydividingitserror;qjjjuÀuphjjjbythecorrespondingerrorinthebestapproximationinfv2Sk;qjjjuÀvjjj.Thedeviationofthisratiofromoneh;p measuresthepollutionwithrespecttothejjjÆjjjnorm.Similarly,thepollutioncanbemeasuredinothernorms,e.g.thekÁkL2norm,etc.,andalsoinanyoutputFðuÞofinterest. Remark4.Intheone-dimensionalcaseandforfiniteelementapproximationusingpolynomialshapefunctionsofdegree ˇka[37,38]haveproventhatp,IhlenburgandBabus p;0 krðuÀupkhhÞkL2ðXÞ %C1þC2k;ð20Þ pinfkrðuÀvÞkL2ðXÞ v2Sh;p ;0kh whereweletSh;p¼Skh;p.ThetermC2kðpÞreflectsthepollutionduetothewavenumber.Tounderstanditseffectlet 1ptolp;ð21Þh¼ kC1 p 4716T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 wheretolisadesirederrortolerance.Thenfortheerrorinthebestapproximationwehave v2Sh;p infkrðuÀvÞkL2ðXÞ%tol ð22Þ ;0 foranyk,whileforthesamechoicesofhandp,fortheerrorintheGalerkinsolutiontotheHelmholtzproblemuph,wehave C2;0 k;ð23ÞkrðuÀuphÞkL2ðXÞ%tol1þC1 whichdivergestoinfinitylinearlywithk. ;q Eq.(18)relatestheerrorinthegeneralizedFEM,jjjuÀuphjjj,withtheerrorinthebestapproximationinfv2Sk;qjjjuÀvjjj.h;p Variousstatementscanbemadeabouttheconvergenceoftheerrorinbestapproximationdependingontheregularityofthesolutionu.Inthispaperwewilladdressonlythecaseofanalyticsolutionsforwhichwehave: ¼X[oX.Then,Theorem3(handpandq-convergence).LetthesolutionuoftheHelmholtzproblem(2c)beanalyticonX1.Forfixedhwehave k;q v2Sh;p infjjjuÀvjjj6CðhÞeÀðaqþbpÞ; ð24Þ wherea,balsodependonh.2.Forfixedpandqwehave infjjjuÀvjjj6Cðp;qÞhÀp. v2Sh;p k;q ð25Þ ThemainresultsneededfortheproofaregiveninMelenk[3,Sections8.4.–8.6.]. ;q Remark5.When(1+k2)hissufficientlysmall,Theorem3alsocharacterizesjjjuÀuphjjj,theerrorinthegeneralized;qp;qFEMsolutionuph.Whenthisassumptiondoesnothold,theerrorinuhcanberatherlarge,e.g.therelativeerror;qjjjuÀuphjjj=jjjujjjcanbe100%orlarger. Remark6.Followingasimilarapproachasin[41,40],itisalsopossibletocharacterizethedependenceofthepollutiononpandqinasimilarformasin(20).4.Implementationaspects Theaimofthecomputationistoobtainreliableinformationforoutputsofinterest.Forexample,wemaybeinterested ;q;q insmallerrormeasuredintheH1-seminormkrðuÀupxÞÀupxÞj,hÞkL2ðXÞ,orinsmallerrorinthepressureatapointjuðhðp;q thevalueofanintegralofthepressure,oringeneralFðuÞÀFðuDhÞ,whereFisanoutputfunctional.Theimplementationconsistsofthefollowingstages:1.FormingthediscreteGFEM(generalizedFEM)equations KU¼F. ð26Þ Inpractice,thecoefficientsinKandFarereplacedbyapproximatevaluesevaluatedbynumericalquadrature,andhence ;q wemustaddresstheeffectoftheerrorinthenumericalintegrations.Moreprecisely,letuph;ÃbethediscreteGFEMsolu-tionobtainedusingtheperturbedsystemK*U*=F*,whereK*,F*are,respectively,theperturbedstiffnessmatrixandloadvectorobtainedusingnumericalquadrature.Then,usingthetriangleinequalitywehave jjjuÀup;qjjjÀjjjup;qÀup;qjjj6jjjuÀup;qjjj6jjjuÀup;qjjjþjjjup;qÀup;qjjj.ð27Þhhh;Ãh;Ãhhh;à ;qp;qThetermjjjuphÀuh;Ãjjjmeasurestheeffectofthenumericalintegrationerrors,andcanaffecttheconvergenceofthemethod.ForananalysisofthenumericalintegrationmethodsforaclassofmeshlessGalerkinapproximationsof ˇkaetal.[45].ThemaintheLaplacian,seeBabusconclusioninthisworkisthat,itisimportantforthenumericalinte-PNDOF grationtosatisfytheconsistencyconditionj¼1Kij¼0,namelythattherowsumofthestiffnessmatrixiszero.2.SolvingthediscreteGFEMequationsbyalinearequationsolver.WeemployGausseliminationwithpartialpivoting,andhencewemustalsoaddresstheeffectoftheroundofferror. T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–47314717 ;q 3.AposteriorianalysisoftheerrorinanoutputFðuphÞ.Herewewillusearatherstraightforwardextrapolationapproachtoestimatetheerrorinanyoutputofinterest,byemploying ;qp;qþs;q FðuÞÀFðupFðuhÞÀFðuphÞhÞ%.p;qþsFðuÞFðuhÞ ;q UsingsufficientlyhighswecanobtainareliableestimatorforanycomputedoutputFðuphÞ. ð28Þ 5.Computationalresultsandtheiranalysis InwhatfollowswewillpresentandanalyzethecomputationalGFEMresultsobtainedbysolvingtheproblemofascat-teringofaplanewavebyarigidcircularcylinder,whichisdepictedinFig.4(a),usingthe(h,p,q)-versionofthegeneralizedFEM.Employingcylindricalcoordinates(r,h),theboundaryvalueproblemforthescatteredpressureu(r,h)reads r2uþk2u¼0;r>a;ouo ¼ÀðuincÞ;r¼a;oror pffiffiou Àiku¼0;limr r!1orwhere uincðr;hÞ¼P0eikrcosh ð30Þð29aÞð29bÞð29cÞ isthepressurefieldfortheincidentplanewave.Usingseparationofvariables(see,e.g.,Jones[46,p.412])weobtainthescatteredfieldintheform 10X nJnðkaÞHnðkrÞcosðnhÞ;ð31Þniuðr;hÞ¼ÀP00HðkaÞnn¼0where0=1,n=2,n50,Hn(z)isthecylindricalHankelfunctionofthefirstkind,andJn(z)isthecylindricalBesselfunc-tionofthefirstkind.Using g1¼À o ðuincÞonC1¼Cson ð32Þ intheNeumannboundarycondition(1b),and g2¼ ou Àikuon onC2 ð33Þ intheRobinboundarycondition(1c),wehavecompletedthedefinitionofourmodelexampleinthefiniteannulardomainXboundedbyC1andC2. Fig.4.(a)Notationsusedinthedefinitionofthemodelexampleofscatteringofaplanewavebyarigidcircularscatterer.(b)Contoursoftherealandimaginarypartsofthescatteredfield. 4718T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 Inourcomputationsweemployedthefollowingdata:•••• Radiusofscatterer,a=1; Amplitudeofincidentwave,P0=1;RadiusoftruncationboundaryR=2;Wavenumber,k=20. ;q InallthecomputationsbelowtheconvergenceofthegeneralizedFEMsolutionuph,willbeobtainedbyincreasingpandqontheCartesianmeshesshowninFig.5. 5.1.p-andq-convergenceofthegeneralizedFEM Inalltheresultsbelow,unlessexplicitlystated,theerrorduetoevaluationofKandFbynumericalintegrationisneg-ligible.Hereweemployedthe40·40Gauss–Legendreintegrationruleinthesquaresnotintersectingtheboundary,whileinthesquareswhichintersecttheboundaryweemployedthe13·13Gauss–Legendreruleinthesubelementsobtainedaftersubdividingtheelementsuniformly9timesandusingblendingfunctiontransformationinthesubelementsadjacenttotheboundary.Tocomputetheloadvectorandstiffnessmatrixcontributionsoftheboundarytermsweused,piecewise,the40pointGauss–Legendreintegrationrule.Thesechoicespracticallyeliminatethenumericalintegrationerrorforka=20,andfortherangeofaccuracysoughtinthecomputations. ;0 InTable1wereportthepercentrelativeerrorkrðuÀuphÞkL2ðXÞ=krukL2ðXÞÂ100%,thecorrespondingpercentrelativep;q;Ã;q;ÃerrorinthebestapproximationkrðuÀAhuÞkL2ðXÞ=krukL2ðXÞÂ100%,whereApudenotesthebestapproximationofuh whichwascomputedusingnumericalintegrationandisdefinedbelow,andthevalueoftheirratio ;0p;q;à krðuÀupuÞkL2ðXÞwhichmeasuresthepollution,forMeshA,B,andC,andforp=1,...,5.WewillhÞkL2ðXÞ=krðuÀAh 1saythatthepollutionintheH-seminormoftheerrorisnegligibleif ;0 krðuÀuphÞkL2ðXÞ;q;ÃkrðuÀApuÞkL2ðXÞh À1<ð34Þ (a)(b)(c)Fig.5.TheCartesianmeshesusedinthecomputations:(a)MeshA,h=0.75;(b)MeshB,h=0.375;(c)MeshC,h=0.1875.Table1 ;0 ThevaluesofthepercentrelativeerrorintheGFEMsolution:krðuÀuphÞkL2ðXÞ=krukL2ðXÞÂ100%(firstline),thebestapproximation: ;q;Ã;0p;q;à uÞkL2ðXÞ=krukL2ðXÞÂ100%(secondline),andtheirratiokrðuÀupuÞkL2ðXÞ(thirdlineinparenthesis)krðuÀAphhÞkL2ðXÞ=krðuÀAh p=1 MeshA h=0.75MeshBh=0.375MeshCh=0.1875 99.9009.1295(1.0078)127.288696.2143(1.3230)185.395581.0208(2.2883) p=2101.829196.8871(1.0510)160.254683.4217(1.9210)109.186736.7081(2.9746) p=3128.9875.3488(1.4437)120.556354.4879(2.2126)14.825011.4461(1.2952) p=4117.288474.9621(1.57)46.441627.0861(1.7146)2.73812.6833(1.0204) p=5103.272456.8233(1.8174)12.699910.6751(1.17)0.50460.5047(0.9980) T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–47314719 forsufficientlysmall>0.Intheresultsbelowweseethatwhentheerrorissmall,theratiokrðuÀuphÞkL2ðXÞ=p;q;à krðuÀAhuÞkL2ðXÞmaybebelowone.Thisisduetotheerrorsintheemployednumericalintegrationsoftheright-hand p;q;à sideofthediscreteproblemforAhu,andthisonlyhappensforrathersmallerrorandwhenthepollutionisnegligible.Remark7.LetusalsonotethatforrectangularelementsitisalsopossibletoevaluateallintegralsanalyticallyfollowingBettessetal.[28,47].Neverthelessthismaynotbethecaseforelementsintersectingtheboundarywhereweneedtoemploynumericalintegration. ;q;Ã;q LetusnowelaborateonthecomputationofthebestapproximationApu.LetAphhubethebestapproximationofuintheH1-seminormdefinedbythediscretevariationalproblem, ;qk;q Bestapproximation:FindAphu2Sh;psuchthatZZ p;q;q rðAhuÞÁrvdX¼ruÁrvdX8v2Skð35Þh;p; X X whereuisgivenby(31).Thisleadstothesystemoflinearequations KBAUBA¼FBA; ð36Þ whereKBAconsistsoftheLaplacianpartofKusedinthediscretesystemofHelmholtzGFEMequations.Theright-hand sideFBAisnotcomputedwhensettingupthediscreteHelmholtzGFEMequations,anditsevaluationrequiresthenumer-icalintegrationofintegralsofthetype ZZ ðiÞDh ruÁrNkdX;ruÁr/iWjdX;ð37Þ X X h respectively,fortheFEdegreesoffreedom,andtheplane-wavedegreesoffreedomineachpatchxDi.Thesenumericalintegrationerrorsfortheemployednumericalquadratureintheevaluationofthesetermsarenotnegligibleandarerespon-;q siblefortheparadoxicalbehavioroftheH1-seminormoftheerrorintheHelmholtzGFEMsolutionuphbeingsmallerthatp;q;ÃthecorrespondingvalueoftheH1-seminormoftheerrorinthebestapproximationAhu,whentherelativeerrorisvery p;qp;qp;q;à small,whenuhandAhushouldbepracticallyidentical.ForthisreasonweemployedthestarinAhutounderlinetheeffectofnumericalintegration. ;q InTheorem2abovewehavestatedthatforsufficientlysmall(1+k2)h,theHelmholtzGFEMsolutionuphconverges;qlikethebestapproximationAphu,namelythereexistsaCsuchthat ;qp;q krðuÀuphÞkL2ðXÞ6CkrðuÀAhuÞkL2ðXÞ. ð38Þ Nevertheless,thepresenttheorydoesnotindicatewhatissufficientlysmall(1+k2)h.Wewillnowgivesomeresultswhichindicatewhen(1+k2)hissufficientlysmallinthesettingofourmodelexample. p;0 InTable1wegivethevaluesofthepercentrelativeerrorintheGFEMsolution:krðuÀuhÞkL2ðXÞ=krukL2ðXÞÂ100%, p;q;Ãp;0p;q;à thebestapproximation:krðuÀAhuÞkL2ðXÞ=krukL2ðXÞÂ100%,andtheirratiokrðuÀuhÞkL2ðXÞ=krðuÀAhuÞkL2ðXÞ 2forMeshA,B,andC,forp=1,...,5,andq=0.Wecanseethatinthepreasymptoticrange,when(1+k)hisnotsuf-;0 ficientlysmall,theerrorcangrowwithdecreasinghandincreasingp;forexampletheerrorkrðuÀuphÞkL2ðXÞgrowswhenhishalvedfromMeshAtoMeshBforp=1,2,andforMeshA,aspisincreasedfromp=1top=3,andforMeshBfor p;q;à p=1top=2.Ontheotherhand,theerrorinthebestapproximationkrðuÀAhuÞkL2ðXÞdecreasesmonotonicallywhenhishalvedandpisincreased. FromTable1itisclearlyvisiblethatthepollutioneffectissmallerforhigherorderelements,whichisincompleteagree-ˇka[37].Itisclearthatthegenericstatement‘‘for(1+k2)hsufficientlysmall’’mentwiththeanalysisofIhlenburgandBabus isnotpreciseenoughandmoreworkisneededforcomingupwithmorepreciseassumptions. Letusnowconsiderthecaseoffixedhwheretheconvergenceisobtainedbyincreasingpandq.Table2givesthepercent ;q relativeerrorintheGFEMsolutionkrðuÀuphÞkL2ðXÞ=krukL2ðXÞÂ100%forp=1,...,5,andq=1,...,17,thecorre-p;q;ÃspondingpercentrelativeerrorinthebestapproximationkrðuÀAhuÞkL2ðXÞ=krukL2ðXÞÂ100%andthevalueoftheir p;qp;q;à ratiokrðuÀuhÞkL2ðXÞ=krðuÀAhuÞkL2ðXÞforMeshA. NotethatinMeshAforp=1(resp.p=2)thepollutionissignificantuptoq=17(resp.q=11)andisresponsibleforthenon-monotonicconvergenceoftheGFEMsolution.ThisisbecausehofMeshAisnot‘‘sufficientlysmall’’.HoweverforpP3,thesamehissufficientlysmallandtheasymptoticcharacteristicsareachievedforqP9forp=3andqP7for ;qp;q p=4,5,andtheerrorintheGFEMHelmholtzsolutionuphisveryclosetotheerrorinthebestapproximationAhu.ThisisvisibleinFigs.6and7wherewegivetheconvergenceoftherelativeerrorintheGFEMbestapproximationandtherelativeerrorintheHelmholtzGFEMsolutionversusqforp=1andp=5.Wecanclearlyseethatwhathissufficientlysmalldependsontheemployedp. Fig.8givestheq-convergenceoftheGFEMbestapproximationandtheGFEMHelmholtzsolutionforMeshAforpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip=1,...,5andq=0,1,...,17.HereweemployedthesquarerootofthetotalnumberofdegreesoffreedomNDOFinthehorizontalaxis.Wenotethatwepracticallyhaveexponentialconvergencewith 4720T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 Table2 ;q ThevaluesofthepercentrelativeerrorintheGFEMsolution:krðuÀuphÞkL2ðXÞ=krukL2ðXÞÂ100%(firstline),thebestapproximation: ;q;Ã;qp;q;à krðuÀApuÞkL2ðXÞ=krukL2ðXÞÂ100%(secondline),andtheirratio:krðuÀupuÞkL2ðXÞ(thirdlineinparenthesis)forMeshAhhÞkL2ðXÞ=krðuÀAhp1 q=188.56 67.7462(1.3122)92.785165.8201(1.4097)86.494359.6792(1.4493)96.574650.0543(1.9294)71.191338.6725(1.8409) q=387.152751.6927(1.6860)87.753849.9326(1.7574)88.333745.1638(1.9558)80.086237.5849(2.1308)53.7927.3563(1.9663) q=575.090929.4483(2.5500)73.631428.5353(2.5804)72.002426.0802(2.7608)45.335821.0737(2.1513)24.659813.6805(1.8026) q=724.09106.1581(3.9121)22.16185.8758(3.7717)73.28514.8816(15.0120)4.40483.6280(1.2141)2.68192.4309(1.1033) q=913.49842.2310(6.0502)3.84572.0874(1.8423)1.93491.7118(1.1303)1.40731.3216(1.08)0.90410.8691(1.0403) q=112.00351.0542(1.9005)6.04320.9945(6.0766)0.83950.7800(1.0763)0.51130.4934(1.0363)0.31220.3020(1.0338) q=134.88090.4320(11.2980)0.45360.3936(1.1524)0.34100.3213(1.0613)0.22110.2137(1.0346)0.14090.1376(1.0240) q=150.28000.1329(2.1068)0.13340.1226(1.0881)0.10200.0981(1.0398)0.07580.0740(1.0243)0.04660.0460(1.0130) q=170.06240.0454(1.3744)0.05060.0431(1.1740)0.03590.0351(1.0228)0.02670.02(1.0114)0.01710.0176(0.9716) 2 3 4 5 GFEMbest approximationRelative error in H1 seminorm (in percent) 100Helmholtz 10Best Approximation1 Mesh Ah = 0.75 0.1h 0.01 0 10 20pollution ends 30 40 50NDOFFig.6.q-convergenceoftheGFEMandbestapproximationforMeshA,forp=1. 1000GFEMbest approximationRelative error in H1 seminorm (in percent) 100Helmholtz 10Best ApproximationMesh Ah = 0.75pollution ends1 0.1 0.01 28h 30 32 34 36 38 40 42 44 46 48 50NDOFFig.7.q-convergenceoftheGFEMandbestapproximationforMeshA,forp=5.T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 10004721 Relative error in H1 seminorm (in percent) 100 10GFEM, p = 1BA, p = 1GFEM, p = 2BA, p = 2GFEM, p = 3BA, p = 3GFEM, p = 4BA, p = 4GFEM, p = 5BA, p = 5Mesh Ah = 0.751 21 0.1h 0.01 0 10 20 30 40 50NDOF;qp;q;ÃFig.8.q-convergenceoftheGFEMsolutionupuforMeshA,forp=1,...,5andhversusthecorrespondingconvergenceofthebestapproximationAhq=0,1,...,17.Notethedependenceofthepre-asymptoticrangeonp.;qÀc krðuÀupDhÞk%Ce pffiffiffiffiffiffiffiffiffiffi NDOF ð39Þ withc%0.5.ThisfollowsfromTheorems2and3whichstatethat,forsufficientlysmallh,wehaveexponentialconver-pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi gencewithq.NotethatNDOFisproportionalwithq. ;q InTable3wegivethepercentrelativeerrorintheGFEMsolution:krðuÀuphÞkL2ðXÞ=krukL2ðXÞÂ100%,thebest ;q;Ãp;qp;q;à approximation:krðuÀApuÞkL2ðXÞ=krukL2ðXÞÂ100%,andtheirratio:krðuÀuhÞkL2ðXÞ=krðuÀAhuÞkL2ðXÞforMeshh B,whereweobtainedtheconvergencebyincreasingpandq.Wenoteherethatthepollutionismuchsmallercompared ;q;à withthesimilarpandqonMeshA.Notealsothatforp=4,5,andq=11,13,thebestapproximationApuispollutedh bytheerrorinthenumericalintegrationofitsright-handsideandwearegettingtheparadoxicalbehaviorthatwemen-;qp;q tionedearlier.Thishappenswellafterthepollutionhasendedandwhenwepracticallyhaveuph%Ahu.ThiscanbeclearlyseeninFig.9. InFig.10,weshowtheq-convergenceforp=1,...,5onMeshC.Theresultsherearepracticallyexactforq=7andq=9.ComparingFigs.9and10weseethedependenceoftheexponentialrateofconvergenceconh. FromtheaboveresultsweseethatthemosteffectivewaytoemploythegeneralizedFEMfortheHelmholtzistouseacoarsemesh,withh=ak=a2p/k,witha2(1,2.5)e.g.about1or2wavelengthperelement,tofixp=2or3,andtoobtainconvergencebyincreasingq.Thisisanalogouswiththep-convergenceemployedbythecommercialcodeStressCheckandotherp-versioncodes. Table3 ;q ThevaluesofthepercentrelativeerrorintheGFEMsolution:krðuÀuphÞkL2ðXÞ=krukL2ðXÞÂ100%(firstline),thebestapproximation: ;q;Ã;qp;q;à krðuÀApuÞkL2ðXÞ=krukL2ðXÞÂ100%(secondline),andtheirratio:krðuÀupuÞkL2ðXÞ(thirdlineinparenthesis)forMeshBhhÞkL2ðXÞ=krðuÀAhp1 q=0127.2886 96.2143(1.3230)160.254683.4217(1.9210)120.556354.4879(2.2125)46.441627.0861(1.7146)12.699910.6751(1.17) q=196.8660.7625(1.5942)88.076350.2974(1.7511)67.515729.9357(2.2554)24.347513.8615(1.7565)6.27525.1855(1.2101) q=3.322722.7306(2.8298)44.722519.4872(2.2950)22.594912.2103(1.8505)7.55915.5327(1.3663)2.28762.0518(1.1149) q=54.38633.4416(1.2745)3.09112.8093(1.1003)1.72181.6559(1.0398)0.73930.7305(1.0120)0.24980.2524(0.97) q=70.86690.8270(1.0482)0.60430.5916(1.0215)0.30440.3018(1.0086)0.11290.1124(1.0044)0.04160.0421(0.9881) q=90.13940.1381(1.0094)0.10480.1041(1.0067)0.06250.0622(1.0048)0.02270.0230(0.9870)0.00870.0094(0.9255) q=110.02150.0214(1.0047)0.01740.0174(1.0000)0.01080.0108(1.0000)0.00190.0053(0.3585)0.00190.0049(0.3878) q=130.00320.0033(0.9697)0.00290.0030(0.9667)0.00190.0024(0.7917)0.00090.0043(0.2093)0.00040.0144(0.0278) 2 3 4 5 4722T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 1000Relative error in H1 seminorm (in percent) 100 10GFEM, p = 1BA, p = 1GFEM, p = 2BA, p = 2GFEM, p = 3BA, p = 3GFEM, p = 4BA, p = 4GFEM, p = 5BA, p = 5 12Mesh Bh = 0.3751 0.1 0.01 0.001h 0.0001 10 20 30 40 50 60 70 80NDOF;qp;q;ÃFig.9.q-convergenceoftheGFEMsolutionupuforMeshB,forp=1,...,5andhversusthecorrespondingconvergenceofthebestapproximationAhq=0,1,...,13.Notetheparadoxicalbehaviorofthebestapproximationwhichisduetonumericalintegrationerrorintheright-handsideofthediscreteequations. 1000 100 10 1Relative error in H1 seminorm (in percent)q-conv, p=1q-conv, p=2q-conv, p=3q-conv, p=4q-conv, p=54 0.1 0.01 0.001 0.0001Mesh Ch = 0.18751h 1e-005 0 20 40 60 80 100 120 140NDOF;qFig.10.q-convergenceoftheGFEMsolutionuphforMeshC,forp=1,...,5,andq=0,1,...,9.ComparingthisfigurewithFig.9weseethedependenceoftheexponentialrateofconvergencecwithh.Aboveweansweredwhatissufficientlysmallhinthesettingofourmodelexample.Now,comparingTables2and3wealsoseetheeffectofthenumericalintegrationontheconvergenceofthebestapproximationwithhwhichwasrecently ˇkaetal.in[45].addressedbyBabus FromTheorems2and3,weexpectthatforsufficientlysmallh,wegetexponentialconvergencewithpandq,namely ;qÀðaqþbpÞ krðuÀuphÞkL2ðXÞ%Ce ð40Þ withC;a,andbdependingonh.LetusnowanalyzethecomputedresultsandaddresstheexponentialratesoftheGFEMinourmodelexample.Figs.11–13graphtheconvergenceoftherelativeerrorversusqforMeshA,B,andC,respectively.Asexpected,forsufficientlysmallh,wegetalinearrelationshipwithpandq,namely ! !p;q krðuÀuhÞkL2ðXÞClog%logÀðaqþbpÞ.ð41Þ krukL2ðXÞkrukL2ðXÞ T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 10004723 Relative error in H1 seminorm (in percent) 100q-conv, p=1q-conv, p=2q-conv, p=3q-conv, p=4q-conv, p=5 10 1Mesh Ah = 0.75 0.11h2 8 10 12 14 16 18 0.01 0 2 4 6q;qFig.11.q-convergenceoftherelativeerroroftheGFEMsolutionuphforMeshAversusq,forp=1,...,5. 1000Relative error in H1 seminorm (in percent) 100q-conv, p=1q-conv, p=2q-conv, p=3q-conv, p=4q-conv, p=5 10143 0.1Mesh Bh = 0.375 0.01 0.001 0.0001h02468 10 12 14q;qFig.12.q-convergenceoftherelativeerroroftheGFEMsolutionuphforMeshBversusq,forp=1,...,5. 1000 100Relative error in H1 seminorm (in percent)q-conv, p=1q-conv, p=2q-conv, p=3q-conv, p=4q-conv, p=5 101 0.1 0.01 0.001 0.0001 1e-005 1e-00611Mesh Ch = 0.1875h02468 10q;qFig.13.q-convergenceoftherelativeerroroftheGFEMsolutionuphforMeshCversusq,forp=1,...,5.4724T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 InFig.11,weseeoscillationswhichindicatepre-asymptoticbehaviour,whilemostoftheresultsinMeshBforqP5,andMeshCforqP3areintheasymptoticrange.Comparingasymptoticrangeinthesefiguresitisclearthattherateofexponentialconvergenceincreasesashisrefined,forexampleforMeshAwehavea%0.5,forMeshB,a%0.75,andforMeshC,a%1.Theimprovementintheexponentialratesaashisdecreasedcanbeexplainedbynotingthat,asthemeshisrefined,thesolutionbecomessmootherlocallywithrespecttothemesh. Letusoncemoreunderlinethatherewearemainlyinterestedintheexponentialconvergencewithq,andweuseptolimittheextentofthepreasymptoticrange.5.2.Aposterioriestimationusingextrapolation Aswehaveseenabove,amainopenprobleminthesolutionoftheHelmholtzequationbythep-versionofthegeneral-izedFEMiswhenthepollutionends,orequivalentlywhatissufficientlysmallh.Althoughatthismomentwecannotanswerthisquestiontheoretically,wemaydetecttheendofthepollutioninasimpleaposterioriway.Further,havingdetectedtheendofthepollution,intheasymptoticrangewecanemployextrapolationtoobtainreliableerrorestimators.Letusgiveanexampleofhowwecandetecttheendofthepollutionandhowwecanuseq-extrapolationforestimating ;q theerrorinacomputedquantityofinterestFðuphÞbyextrapolation.Letusunderlinethatbeforeapplyinganyextrapo-lationweneedtomakesurethatthevaluesemployedintheapproximationareintheasymptoticrange.Thiscanbedeter-pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip;q minedbyemployingagraphofthevalueofthecomputedoutputFðuhÞversusqorequivalentlyversusNDOF.Letus,forexample,employtheH1-seminormofthesolutionasthequantityofinterest,namelyFðuÞ¼krukL2ðXÞ.pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip;qp;q InFig.14(resp.Fig.15)weplottedFðuhÞ¼kruhkL2ðXÞversusNDOFforp=1,...,5,andq=0,1,...,17,forMeshA(resp.q=0,1,...,13forMeshB).Frombothfiguresitisrathereasytodetecttheendofthepollutionandtheextentoftheasymptoticrangeforwhichweexpecttheextrapolationtogivegoodresults.Wecannowemploythesimpleextrapolationproposedin(28)abovetoobtaintheestimator p;qEskruhkL2ðXÞ ¼ p;qþs;q kruhkL2ðXÞÀkruphkL2ðXÞ p;qþskruhkL2ðXÞ ð42Þ ;q fortherelativeerrorinkruphkL2ðXÞ.Weseethatbyemployingq=11,s=6forMeshA,andq=7,s=6forMeshB,wegeteffectivitiesbetween0.67and1.67(seeTables4and5).Itisalsopossibletoemployamoresophisticatedextrapolation ´[42,p.69].ˇkaandSzabotoextracthigherorderaccuracy,as,e.g.inBabus Letusunderlinethatthisq-extrapolationapproachcanbeusedfortheaposterioriestimationoftheerrorinanyquan-tityofinterestanddoesnotrequireanyextracoding. Comparingtheresultsofouraposterioriapproachfordetectingtheendofthepollutionandforestimatingtheerror,weseethatwegetarobustmethodwithrespecttothemeshsizeh.Weseethatthecharacterofthegraphsandtheeffectivityindicesarepracticallythesameforbothmeshes. 50 45H1 seminorm of the approximate solution 40 35 30 25 20 15 105q-conv, p=1q-conv, p=2q-conv, p=3q-conv, p=4q-conv, p=5asymptotic behavior}Mesh Ah = 0.75pollution ends(u) = ||∇u||2Lh05 10 15 20 25 30 35 40 45 50NDOFpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi;qp;qFig.14.GraphoftheoutputFðupNDOFforMeshA.FromthisgraphwecandetectwherethepollutionhaspracticallyendedhÞ¼kruhkL2ðXÞversusandtheasymptoticrangeforwhichwecanemploytheextrapolationwithgoodresults.T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 50 484725 H1 seminorm of the approximate solution 46 44 42 40(u) = ||∇u||L2q-conv, p=1q-conv, p=2q-conv, p=3q-conv, p=4q-conv, p=5}asymptotic behaviorpollution endsh 30 40 50 60 70 80 38 36 34 32 30 28 10Mesh Bh = 0.375 20NDOF;qp;qFig.15.GraphoftheoutputFðuphÞ¼kruhkL2ðXÞversuspffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiNDOFforMeshB.Table4 ;11 ExactandestimatedrelativeerroranditseffectivityindexfortherelativeerrorinkruphkL2ðXÞ,computedonMeshAp p;11 krukL2ðXÞÀkruhkL2ðXÞ krukL2ðXÞ 1 2345 0.03860.17530.01050.00090.0008 (%) ;17p;11 kruphkL2ðXÞÀkruhkL2ðXÞ ;17kruphkL2ðXÞ (%)h0.9819 0.99711.00000.66671.2500 0.03790.17480.01050.00060.0010 Table5 ;7 ExactandestimatedrelativeerroranditseffectivityindexfortherelativeerrorinkruphkL2ðXÞ,computedonMeshBp ;7 krukL2ðXÞÀkruphkL2ðXÞ krukL2ðXÞ 1 2345 0.00850.00570.00050.00010.00003 (%) p;13;7kruhkL2ðXÞÀkruphkL2ðXÞ ;13kruphkL2ðXÞ (%)h0.9882 0.98251.60001.00001.6667 0.00840.00560.00080.00010.00005 5.3.Theeffectsofperturbationofthemesh Theoretically,perturbationofthemeshcouldinfluenceboththeapproximityandstabilityofthemethod,throughtheconstantCinTheorem3.Togettheideahowmuchthisinfluencecanbeweemployedacoupleofsamplecomputations. ;q TocheckthesensitivityoftheGFEMsolutionoftheHelmholtzproblemuphwithrespecttoperturbationsofthemesh,weemployedtheperturbedMeshBandMeshCshowninFig.16,andinFigs.17and18wecomparetheconvergenceoftherelativeerrorfortheunperturbedandperturbedmeshes.FromthesegraphsitisclearthattheconvergenceoftheGFEMsolutionisnotsensitivewithrespecttoperturbationsofthenodesofthemesh.5.4.Theeffectsofroundofferror Thetheoreticalperformanceofthemethodwasestablishedundertheassumptionthatthereisneitherroundoffnorquadratureerror.Nextwewantedtogetanideaofhowmuchtheroundofferrorcaninfluencetheresults. ;q TostudytheeffectoftheroundofferrorintheconvergenceofthegeneralizedFEMsolutionuph,weemployedasourmodelexample,theHelmholtzequationontheunitsquareX=(0,1)·(0,1)withRobinboundaryconditions T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 Fig.16.PerturbedMeshBandMeshC. 1000q-conv, p=1, pertq-conv, p=1)tq-conv, p=2, pertq-conv, p=2n 100ecq-conv, p=3, pertq-conv, p=3rep n 10hq-conv, p=4, pertq-conv, p=4i(q-conv, p=5, pertq-conv, p=5 mronim 1es2 1H 0.1Mesh Bnih = 0.3751 rorre 0.01evitaleR 0.001 0.0001 10 20 30 40 50 60 70 80NDOFFig.17.ConvergencecurvesforperturbedandunperturbedMeshB. 1000q-conv, p=1q-conv, p=1, pert 100q-conv, p=2)tq-conv, p=2, pertneq-conv, p=3crq-conv, p=3, pertep 10q-conv, p=4 nhq-conv, p=4, perti( q-conv, p=5mq-conv, p=5, pertr 1onimes 0.1 14HMesh C ni 0.01h = 0.18751rorre ev 0.001italeR 0.0001 1e-005 0 20 40 60 80 100 120 140NDOFFig.18.ConvergencecurvesforperturbedandunperturbedMeshC.ÀDuþk2u¼0inX;ou on þiku¼gonoX;ð43aÞð43bÞ 4726T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–47314727 wherewechosegsuchthattheexactsolutionistheplanewave p uðx;yÞ¼eikðxcoshþysinhÞ;h¼. 16 ð44Þ ForthisexampletherealreadyexistresultsbyMelenk[3]forp=0,q=1,...,19onuniformN·NmeshesofsquaresforN=1,2,4,and8. ;q Tables6–8comparetheresultsfortherelativeerrorkrðuÀuphÞkL2ðXÞ=krukL2ðXÞcomputedusingp=1andq=1,3,...,19,onthe4·4meshfork=1,2,4,8,16,32,and,usingdoubleprecisionintheWindowsmachine(Table6),andtheLinuxmachine(Table7),withtheresultscomputedusingquadrupleprecisionintheUnixmachine(Table8).TheresultsbyMelenkareavailableinhisPh.D.thesisandisincludedinthegraphsbelow. Figs.19–22givetheconvergencegraphsfork=1,16,32,and.Notethatforlowktheconvergenceislimitedbythemachineprecision.Thisisbecausetheemployedwavefunctionsarelinearlydependentatthelimitofzerowavenumberk=0.Notealsothatasthewavenumberkisincreasedthereissmalldifferenceduetothemachineprecision.Forexample,fork=,allresultspracticallycoincideandtheaccuracyoftheapproximationislimitednotbytheroundoffbutbythenumericalintegrationerror.Nevertheless,forexactintegration,theexponentialconvergencecanalwaysbemaintainedto Table6 Convergenceusing4·4mesh,usingdoubleprecisioninWindowsmachine.Theresultsbelowthehorizontallinesarepollutedbytheroundoffindoubleprecisionq135791113151719 k=1.00.2750DÀ020.1900DÀ060.58DÀ070.1507DÀ060.2983DÀ060.1650DÀ060.3206DÀ060.3572DÀ050.1673DÀ060.1719DÀ06 k=2.00.5519DÀ020.2424DÀ050.8562DÀ070.5798DÀ060.7242DÀ060.3113DÀ060.8369DÀ060.8628DÀ060.3871DÀ060.9188DÀ06 k=4.00.1121DÀ010.7345DÀ040.55DÀ070.8622DÀ070.3922DÀ060.1344DÀ060.2596DÀ060.53DÀ060.1636DÀ060.4349DÀ06 k=8.00.2363DÀ010.1811DÀ020.1982DÀ040.2592DÀ070.5706DÀ070.1780DÀ060.1302DÀ060.1850DÀ060.1995DÀ060.23DÀ06 k=16.00.59DÀ010.1768DÀ010.2368DÀ020.5621DÀ040.91DÀ060.8442DÀ080.4207DÀ070.2279DÀ060.5962DÀ060.1175DÀ06 k=32.00.1820D+000.5667D+000.6921DÀ010.3792DÀ010.8337DÀ030.7908DÀ040.1426DÀ050.3379DÀ080.4638DÀ070.1766DÀ06 k=.00.6907D+000.7042D+000.7317D+000.8227D+000.1639D+000.4165DÀ010.4636DÀ020.1371DÀ030.2173DÀ040.1747DÀ04 Table7 Convergenceusing4·4mesh,usingdoubleprecisioninLinuxmachineq135791113151719 k=1.00.2750DÀ020.9192DÀ070.9855DÀ070.9068DÀ070.4880DÀ060.6618DÀ060.1237DÀ060.1913DÀ060.6194DÀ060.3583DÀ06 k=2.00.5519DÀ020.2424DÀ050.5841DÀ070.4599DÀ060.4840DÀ060.5812DÀ060.6510DÀ060.7104DÀ060.4544DÀ060.3831DÀ06 k=4.00.1121DÀ010.7345DÀ040.55DÀ070.2425DÀ060.11DÀ060.2132DÀ060.2399DÀ050.2045DÀ060.13DÀ060.4550DÀ06 k=8.00.2363DÀ010.1811DÀ020.1982DÀ040.2591DÀ070.1195DÀ060.1157DÀ060.1315DÀ060.2281DÀ060.3082DÀ060.3862DÀ06 k=16.00.59DÀ010.1768DÀ010.2368DÀ020.5621DÀ040.91DÀ060.26DÀ070.1441DÀ060.1318DÀ060.17DÀ060.1261DÀ06 k=32.00.1820D+000.5667D+000.6921DÀ010.3792DÀ010.8337DÀ030.7908DÀ040.1426DÀ050.3476DÀ080.5919DÀ070.7770DÀ07 k=.00.6907D+000.7042D+000.7317D+000.8227D+000.1639D+000.4165DÀ010.4636DÀ020.1371DÀ030.2173DÀ040.1747DÀ04 Table8 Convergenceusing4·4mesh,usingquadrupleprecisioninUnixmachineq135791113151719 k=1.00.2750EÀ020.7666EÀ070.2320EÀ120.2340EÀ150.3914EÀ150.3011EÀ140.66EÀ140.1993EÀ140.1251EÀ140.6050EÀ14 k=2.00.5519EÀ020.2424EÀ050.1168EÀ090.5970EÀ150.1656EÀ140.3018EÀ140.3552EÀ150.8273EÀ150.1202EÀ140.8296EÀ14 k=4.00.1121EÀ010.7345EÀ040.5586EÀ070.4509EÀ110.9733EÀ160.3061EÀ150.4621EÀ150.2594EÀ140.1277EÀ140.7191EÀ15 k=8.00.2363EÀ010.1811EÀ020.1982EÀ040.2583EÀ070.1103EÀ100.1634EÀ140.1905EÀ150.3105EÀ150.1135EÀ140.1269EÀ14 k=16.00.59EÀ010.1768EÀ010.2368EÀ020.5621EÀ040.91EÀ060.1542EÀ080.8322EÀ120.7876EÀ160.73EÀ160.1403EÀ15 k=32.00.1820E+000.5667E+000.6921EÀ010.3792EÀ010.8337EÀ030.7908EÀ040.1426EÀ050.3223EÀ080.4672EÀ100.1828EÀ11 k=.00.6907E+000.7042E+000.7317E+000.8227E+000.1639E+000.4165EÀ010.4636EÀ020.1371EÀ030.2173EÀ040.1747EÀ04 4728T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 1001 0.01 0.0001 1e-006 1e-008 1e-010 1e-012 1e-014 1e-0161x1 mesh, windows1x1 mesh, Linux1x1 mesh, Babuška1x1 mesh, quadruple2x2 mesh, windows2x2 mesh, Linux2x2 mesh, Babuška2x2 mesh, quadruple4x4 mesh, windows4x4 mesh, Linux4x4 mesh, Babuška4x4 mesh, quadruple8x8 mesh, windows8x8 mesh, Linux8x8 mesh, Babuška 40 50 60Relative error in H1 seminorm (in percent)quadruple precision0 10 20 30NDOFˇka,Windowsmachine,Linuxmachine,andquadrupleprecisionfork=1.HerewelabelonlythegraphsFig.19.ComparisonofresultsofBabuscomputedusingquadrupleprecision. 1001 0.01 0.0001 1e-006 1e-008 1e-010 1e-012 1e-014 1e-0161x1 mesh, windows1x1 mesh, Linux1x1 mesh, Babuškaquadruple1x1 mesh, quadrupleprecision2x2 mesh, windows2x2 mesh, Linux2x2 mesh, Babuška2x2 mesh, quadruple4x4 mesh, windows4x4 mesh, Linux4x4 mesh, Babuška4x4 mesh, quadruple8x8 mesh, windows8x8 mesh, Linux8x8 mesh, Babuška0 10 20 30 40 50 60double precisionRelative error in H1 seminorm (in percent)NDOFˇka,Windowsmachine,Linuxmachine,andquadrupleprecisionfork=16.Fig.20.ComparisonofresultsofBabussmallerrelativeerrorbyquadrupleprecision.Similarly,ifwehadthecapabilitytoemployoctupleprecisionwecouldmain-taintheexponentialconvergencetoevenhigheraccuracy.Alldoubleprecisioncomputations(Linux,Windows,Melenk) givepracticallyidenticalresultsuntiltheroundofferrorbecomessignificant. Letus,oncemore,underlinethatthedifferenceinthecomputedresultsareduetotheroundoffeffectintheemployeddirectsolver.Itisalsointerestingtonotethatthevariousdoubleprecisioncomputationgivedifferentresults,thedifferencebecomesvisiblewhenwereachthelimitofaccuracybelowthehorizontallineinthecolumns. Remark8.LetusalsonotethattheconditioningofthepartitionofunitymethodusingsystemsofplanewaveshasbeenaddressedinthepaperbyLaghrouche,Bettess,andAstley,whereitwasconcludedthat‘‘itispossibletodetermine‘safe’regionsintheqÀkdomainforwhichtheconditionnumberstayswithinacceptablelimitsonanelementbyelementbasis...’’.Formoredetailssee[48]. Remark9.HereandinotherrelatedworksthegeneralizedFEM/PartitionofUnityMethodwasbasedonusingplane-wavesasthelocalbasis.Howeveritisanopenquestionwhatistheoptimalchoiceoflocalbasis;seealso[49]wherewegivesamplecomparisonsofthePartitionofUnityMethodusingplane-wavesversusthesamemethodusingwave-bands.Ofcoursemanyotherchoicesarepossible,like,forexamplethegeneralizedharmonicpolynomialsofVekuaproposedin[3],etc. T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 100001x1 mesh, windows1x1 mesh, Linux1x1 mesh, Babuška1x1 mesh, quadruple2x2 mesh, windows2x2 mesh, Linux2x2 mesh, Babuška2x2 mesh, quadruple4x4 mesh, windows4x4 mesh, Linux4x4 mesh, Babuška4x4 mesh, quadruple8x8 mesh, windows8x8 mesh, Linux8x8 mesh, Babuška4729 Relative error in H1 seminorm (in percent) 1001 0.01 0.0001 1e-006 1e-008 1e-0100 10 20 30 40 50 60NDOFˇka,Windowsmachine,Linuxmachine,andquadrupleprecisionfork=32.NotethatthereispracticallyonlyFig.21.ComparisonofresultsofBabussmalldifferencebetweentheresultscomputedindoubleandquadrupleprecision. 1000 100 101 0.1 0.01 0.001 0.0001 1e-005 1e-00601x1 mesh, windows1x1 mesh, Linux1x1 mesh, Babuška1x1 mesh, quadruple2x2 mesh, windows2x2 mesh, Linux2x2 mesh, Babuška2x2 mesh, quadruple4x4 mesh, windows4x4 mesh, Linux4x4 mesh, Babuška4x4 mesh, quadruple8x8 mesh, windows8x8 mesh, Linux8x8 mesh, BabuškaRelative error in H1 seminorm (in percent)integration error 10 20 30 40 50 60 70NDOFˇka,Windowsmachine,Linuxmachine,andquadrupleprecisionfork=.NotethattheresultsfortheFig.22.ComparisonofresultsofBabuscomputationindoubleandquadrupleprecisionpracticallycoincides.6.Conclusionsandopenproblems WehavedevelopedtheGFEMfortheHelmholtzequationforhighwavenumberwithcapabilitiestouseCartesianmeshesofrectanglesoverlappingthedomainboundary,andenrichmentoftheapproximationbywavefunctionspastedbythePUM. Wecansummarizetheconclusions,whicharebasedontheoreticalunderstandingandoncomputationscomplementingwhatispossibletosaybythetheory,asfollows: 1.ThepollutioneffectfortheHelmholtzequationcannotbeavoided.Itisincreasingwithkanddecreasingwithincreasingpandq.Wecan,however,detectthepollutionbyusinganaposteriorierrorestimation. 2.Wehaveexponentialrateofconvergencewithrespecttowavedirections.Thisispredictedbythetheoryandholdsinalargerangeofpracticalaccuracy,asitcanbeseenfromournumericalexperiments. 3.Thenumericalintegrationsinfluencetheaccuracyofthesolution.Integrationerrorcanbedetectedbyaposterioriestimation. 4730T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–4731 4.Roundofferrormustbeanalyzedtogetherwiththenumericalintegrationerrorbecausebotherrorshavesimilarchar-acter.Toanalyzetheinfluenceofroundofferroronlybytheconditionnumberisnotcorrect.Wewouldalsoliketomentionsomeoftheopenproblems: 1.Characterizationofthepollutioneffect.Thetheorythatwehaveisvalidonlyforsufficientlysmallh. 2.Theoreticalanalysisoftheinfluenceoftheintegrationerrorisnotavailable,aswellasdeterminationoflargesttoleranceintheadaptiveintegrationleadingtothegoaloftheanalysis. 3.Theroundoffanalyses,alongwiththeoryandpracticeoftheconstructionoftheshapefunctionwhichleadtothegoodconditioningnumber,andpossiblyforpreconditioningandeffectiveiterativesolverareopen. Acknowledgements ThisworkwassupportedbytheOfficeofNavalResearchunderGrantsN00014-99-1-0726(PI:T.Strouboulis)and ˇka).ThesupportofDr.LuiseCouchmanoftheOfficeofNavalResearchisgreatlyN00014-99-1-0724(PI:I.Babus appreciated. TheauthorsalsoexpresstheirgratitudetoDelinWangforhishelpinobtainingtheconvergenceresultsusingquadrupleprecision.References ˇka,G.Caloz,J.E.Osborn,Specialfiniteelementmethodsforaclassofsecondorderellipticproblemswithroughcoefficients,SIAMJ.[1]I.Babus Numer.Anal.31(4)(1994)945–981. [2]J.M.Melenk,FiniteelementmethodswithharmonicshapefunctionsforsolvingLaplace’sequation,Master’sthesis,UniversityofMaryland,College ˇka),1992.Park,MD(Advisor:I.Babus ˇka),1995.[3]J.M.Melenk,Ongeneralizedfiniteelementmethods,Ph.D.thesis,UniversityofMaryland,CollegePark,MD(Advisor:I.Babus ˇka,J.M.Melenk,Thepartitionofunityfiniteelementmethod:basictheoryandapplications,Comput.MethodsAppl.Mech.Engrg.139[4]I.Babus (1996)2–314. ˇka,J.M.Melenk,Thepartitionofunitymethod,Int.J.Numer.MethodsEngrg.40(1997)727–758.[5]I.Babus ˇka,Approximationwithharmonicandgeneralizedharmonicpolynomialsinthepartitionofunitymethod,Comput.Assist.[6]J.M.Melenk,I.Babus Mech.Engrg.Sci.4(1997)607–632. [7]A.Duarte,Thehpcloudmethod,Ph.D.thesis,UniversityofTexasatAustin,Austin,TX(Advisor:J.T.Oden),1996.[8]C.A.Duarte,J.T.Oden,Anhpadaptivemethodusingclouds,Comput.MethodsAppl.Mech.Engrg.139(1996)237–262. ˇka,T.Strouboulis,K.Copps,Thedesignandanalysisofthegeneralizedfiniteelementmethod,Comput.MethodsAppl.Mech.Engrg.181[9]I.Babus (1)(2000)43–69. ˇka,K.Copps,Thegeneralizedfiniteelementmethod:anexampleofitsimplementationandillustrationofitsperformance,[10]T.Strouboulis,I.Babus Int.J.Numer.MethodsEngrg.47(2000)1401–1417. [11]K.Copps,Thedesignandimplementationofthegeneralizedfiniteelementmethod,Ph.D.thesis,TexasA&MUniversity,CollegeStation,TX (Advisor:T.Strouboulis),August2000. ˇka,Thegeneralizedfiniteelementmethod,Comput.MethodsAppl.Mech.Engrg.190(2001)4081–4193.[12]T.Strouboulis,K.Copps,I.Babus [13]L.Zhang,Generalizedfiniteelementmethodformultiscaleanalysis,Ph.D.thesis,TexasA&MUniversity,CollegeStation,Texas(Advisor:T. Strouboulis),August2003. ˇka,Generalizedfiniteelementmethodusingmesh-basedhandbooks:applicationtoproblemindomainswithmany[14]T.Strouboulis,L.Zhang,I.Babus voids,Comput.MethodsAppl.Mech.Engrg.192(2003)3109–3161. ˇka,p-versionofthegeneralizedFEMusingmesh-basedhandbookswithapplicationstomultiscaleproblems,Int.J.[15]T.Strouboulis,L.Zhang,I.Babus Numer.MethodsEngrg.60(2004)1639–1672.[16]J.Dolbow,N.Moe¨s,T.Belytschko,Discontinuousenrichmentinfiniteelementswithapartitionofunitymethod,FiniteElem.Anal.Des.36(2000) 235–260. [17]N.Sukumar,D.L.Chopp,N.Moe¨s,T.Belytschko,Modelingholesandinclusionsbylevelsetsintheextendedfinite-elementmethod,Comput. MethodsAppl.Mech.Engrg.190(2001)6183–6200. ˇka,J.T.Oden,Generalizedfiniteelementmethodsforthree-dimensionalstructuralmechanicsproblems,Comput.Struct.177[18]C.A.Duarte,I.Babus (2000)215–232. ˇka,U.Banerjee,J.E.Osborn,Onprinciplesfortheselectionofshapefunctionsforthegeneralizedfiniteelementmethod,Comput.Methods[19]I.Babus Appl.Mech.Engrg.191(2002)5595–5629. ˇka,U.Banerjee,J.E.Osborn,Surveyofmeshlessandgeneralizedfiniteelementmethods:aunifiedapproach,ActaNumer.(2003)1–125.[20]I.Babus ˇka,U.Banerjee,J.E.Osborn,Generalizedfiniteelementmethods—mainideas,resultsandperspective,Int.J.Comput.Methods1(1)(2004)[21]I.Babus 67–103. [22]T.Liszka,J.Orkisz,Thefinitedifferencemethodatarbitraryirregulargridsanditsapplicationinappliedmechanics,Comput.Struct.11(1980)83– 95. [23]W.Tworzydlo,Analysisoflargedeformationsofmembraneshellsbythegeneralizedfinitedifferencemethod,Comput.Struct.27(1987)35–59.[24]C.A.Duarte,O.N.Hamzeh,T.J.Liszka,W.W.Tworzydlo,Ageneralizedfiniteelementmethodforthesimulationofthree-dimensionaldynamic crackpropagation,Comput.MethodsAppl.Mech.Engrg.190(2001)2227–2262. [25]T.J.Liszka,C.A.M.Duarte,W.W.Tworzydlo,Hp-meshlesscloudmethod,Comput.MethodsAppl.Mech.Engrg.139(1996)263–288. T.Strouboulisetal./Comput.MethodsAppl.Mech.Engrg.195(2006)4711–47314731 [26]O.Laghrouche,P.Bettess,Solvingshortwaveproblemsusingspecialfiniteelements—towardsanadaptiveapproach,in:J.Whiteman(Ed.),The MathematicsofFiniteElementsandApplications,vol.X,Elsevier,1999,pp.181–194. [27]O.Laghrouche,P.Bettess,E.Perrey-Debain,J.Trevelyan,WaveinterpolationfiniteelementsforHelmholtzproblemswithjumpsinthewavespeed, Comput.MethodsAppl.Mech.Engrg.194(2005)367–381. [28]P.Bettess,J.Shirron,O.Laghrouche,B.Peseux,R.Sugimoto,J.Trevelyan,Anumericalintegrationschemeforspecialfiniteelementsforthe Helmholtzequation,Int.J.Numer.MethodsEngrg.56(2003)531–552. [29]P.Ortiz,Finiteelementsusingaplane-wavebasisforscatteringofsurfacewaterwaves,Philos.Trans.R.Soc.Lond.A362(2004)525–540.[30]R.J.Astley,P.Gamallo,Specialshortwaveelementsforflowacoustics,Comput.MethodsAppl.Mech.Engrg.194(2005)341–353. [31]E.Perrey-Debain,O.Laghrouche,P.Bettess,J.Trevelyan,Plane-wavebasisfiniteelementsandboundaryelementsforthree-dimensionalwave scattering,Philos.Trans.R.Soc.Lond.A362(2004)561–577. [32]C.Farhat,I.Harari,L.P.Franca,Thediscontinuousenrichmentmethod,Comput.MethodsAppl.Mech.Engrg.190(2001)55–79. [33]C.Farhat,I.Harari,U.Hetmaniuk,AdiscontinuousGalerkinmethodwithLagrangemultipliersforthesolutionofHelmholtzproblemsinthemid-frequencyregime,Comput.MethodsAppl.Mech.Engrg.192(2003)13–1419. `ze,Thevariationaltheoryofcomplexrays:apredictivetoolformedium-frequencyvibrations,Comput.MethodsAppl.Mech.[34]P.Rouch,P.Ladeve Engrg.192(2003)3301–3315. `ze,P.Rouch,Extensionofthevariationaltheoryofcomplexraystoshellsformedium-frequencyvibrations,J.SoundVib.272[35]H.Riou,P.Ladeve (2004)341–360. ´quencesparlathe´orievariationnelledesrayoncomplexes,Ph.D.thesis,ENSdeCachan,[36]H.Riou,Surlecalculdesvibrationsmoyennesethautesfre 2004. ˇka,FiniteelementsolutiontotheHelmholtzequationwithhighwavenumber—PartII:Thehp-versionoftheFEM,SIAMJ.[37]F.Ihlenburg,I.Babus Numer.Anal.34(1)(1997)315–358. ˇka,DispersionanalysisanderrorestimationofGalerkinfiniteelementmethodsfortheHelmholtzequation,Int.J.Numer.[38]F.Ihlenburg,I.Babus MethodsEngrg.38(1995)3745–3774. [39]F.Ihlenburg,FiniteElementAnalysisofAcousticScattering,Springer,1998. ˇka,S.Sauter,IsthepollutioneffectoftheFEMavoidablefortheHelmholtzequationconsideringhighwavenumbers?SIAMJ.Numer.[40]I.Babus Anal.34(6)(1997)2392–2423. ˇka,P.Bouillard,DispersionandpollutionoftheFEMsolutionfortheHelmholtzequationinone,twoandthree[41]A.Deraemaeker,I.Babus dimensions,Int.J.Numer.MethodsEngrg.46(4)(1999)471–499. ´,I.Babusˇka,FiniteElementAnalysis,JohnWiley&SonsInc.,NewYork,1991.[42]B.A.Szabo ˇka,F.Ihlenburg,T.Strouboulis,S.K.Gangaraj,AposteriorierrorestimationforfiniteelementsolutionsofHelmholtz’equation.PartI:The[43]I.Babus qualityoflocalindicatorsandestimators,Int.J.Numer.MethodsEngrg.40(1997)3443–3462. ˇka,F.Ihlenburg,T.Strouboulis,S.K.Gangaraj,AposteriorierrorestimationforfiniteelementsolutionsofHelmholtz’equation.PartII:[44]I.Babus Estimationofthepollutionerror,Int.J.Numer.MethodsEngrg.40(1997)3883–3900. ˇka,U.Banerjee,J.E.Osborn,Quadratureerrorinmeshlessmethods,inpreparation.[45]I.Babus [46]D.S.Jones,AcousticandElectromagneticWaves,OxfordUniversityPress,NewYork,1986. [47]R.Sugimoto,P.Bettess,J.Trevelyan,AnumericalintegrationschemeforspecialquadrilateralfiniteelementsfortheHelmholtzequation,Commun. Numer.MethodsEngrg.19(2003)233–245. [48]O.Laghrouche,P.Bettess,R.J.Astley,Modelingofshortwavediffractionproblemsusingapproximatingsystemsofplanewaves,Int.J.Numer. MethodsEngrg.54(2002)1501–1533. [49]T.Strouboulis,R.Hidajat,PartitionofunitymethodforHelmholtzequation:q-convergenceforplane-waveandwave-bandlocalbases,Appl.Math., toappear.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- baoaiwan.cn 版权所有 赣ICP备2024042794号-3
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务